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Abstract
The Linguistic Geometry (LG) approach to discrete systems was introduced by B. Stilman in early 80s.

It employed competing/cooperating agents for modeling and controlling of discrete systems. The approach
was applied to a variety of problems with huge state spaces including control of aircraft, battlefield robots,
and chess. One of the key innovations of LG is the use of almost winning strategies, rather than truly
winning strategies for the participating agents. There are many cases where the winning strategies have so
high time complexity that they are not computable in practice, whereas the almost winning strategies can be
applied and they beat the opposing agent almost guaranteed. Independently of LG the idea of competing/
cooperating agents was employed in the late 80s by A. Nerode, A. Yakhnis, and V. Yakhnis (NYY) within
their approach to modeling concurrent systems and, more recently, within the “Strategy Approach to
Hybrid Systems” developed for continuous systems by A. Nerode, W. Kohn, A. Yakhnis, and others.
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1. INTRODUCTION

1.1. “Competing Agents” View on State Transition Systems
To solve the problem of systems control, we view the state transition process of a

system as a contest/cooperation between several competing/ cooperating agents, one of
which may be Controlling-Agent. When there are only two competing agents, we'll call
the other agent the Opposing-Agent. For simplicity sake and also since the case of two
competing agents is a common occurrence, we'll mostly limit our introductory discussion
to that case.

Similar to the Controlling-Agent, the Opposing-Agent exercises at least a partial
influence over the state transitions and, in contrast to the Controlling-Agent, its purpose is
either to guide the controlled process to a point where the constraint would be violated or
to prevent reaching the goal. Such formal view of STS control was introduced in the early
1980s by B. Stilman in [Stilman, 1981, 1985]. A substantial later refinement of Stilman's
approach was called in [Stilman, 1992] the “Linguistic Geometry” (LG). In the late 80s a
similar view independently appeared within Nerode-A. Yakhnis-V. Yakhnis (NYY)
approach to modeling concurrent systems [Yakhnis, A. 1989; Yakhnis, V. 1989; Nerode,
Yakhnis, Yakhnis 1992, 1993], and, more recently, within the Nerode-Kohn-Yakhnis
(NKY) approach [Kohn, Nerode 1993; Nerode, Remmel, Yakhnis 1993; Nerode, Yakhnis
1992].

The “two competing agents” view requires us to always identify (or create) the
competing agents, even if the original system does not include their explicit definition.
For example, in chess the Opposing-Agent is the player we are not rooting for. For a
concurrent program, similar to the Controlling-Agent, the Opposing-Agent is not
explicitly given. We may think that in some sense it is all the hardware involved in
running the program [Nerode, Yakhnis, Yakhnis 1992]. The major benefit of the “two
competing agents” view is a possibility to formulate for each competing agent an explicit
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strategy guiding its behavior. All the above approaches concentrate on finding such
strategies.

1.2. Computational Power of Linguistic Geometry
The purpose of this paper is to investigate the foundations for the Linguistic

Geometry (LG) approach, so that the similarities and the differences between it and the
other approaches exploiting the idea of “several competing/cooperating agents” would be
well understood. Experiments comparing the AI search systems based on LG and those
utilizing other approaches (e.g. alpha-beta pruning) have shown the former to be superior
[Stilman 1994a, 1994b, 1995b]. Some of the problems were not solvable by other
approaches at all, whereas LG systems successfully solved them [Stilman 1995a]. For
other problems both the branching factor and the computation time for the systems based
on LG were several times smaller than those for the competition [Stilman, 1994a]. Note
that although LG has a discrete nature, it has been applied to some continuous systems as
well through an ad hoc discretization of the latter [Stilman, 1994-1995].

The computational power of LG is based on a utilization of human expert heuristics
which were highly successful in a certain class of complex control systems. However, in
contrast to the other approaches based on the idea of “two competing agents”, these
heuristics made the mathematical essence of LG extremely complex and thus less
obvious.

After the present investigation we expect to extend the application domain of LG to
the area of verification of concurrent systems (through the NYY approach) and to the
operating systems supporting persistent truly concurrent objects. Presently an approach to
the latter area is being developed [Yakhnis, Yakhnis, in preparation]. It is partially based
of the NYY ideas. We also expect that the Linguistic Geometry would have more
extensive applications to continuous systems via the “Strategy Approach to Hybrid
Systems” developed by A. Nerode, W. Kohn, A. Yakhnis (NKY), and others [Kohn,
Nerode 1993; Nerode, Remmel, Yakhnis 1993; Nerode, Yakhnis 1992]. This is possible
since the latter approach eventually converts continuous systems into discrete ones.

2. MULTI-AGENT GRAPH-GAMES

2.1. Origins of Multi-Agent Graph-Games
We are going to generalize the alternating two player graph games by allowing

arbitrary number of players, simultaneous moves, and skipping of moves by players. In
addition, we'll allow the players to have not mutually excluding winning conditions.
Allowing simultaneous moves significantly changes the game environment. For example,
the game determinacy result for two player games fails when simultaneous moves are
allowed. To underline this difference, we will call the players “agents”. We represent the
rules of the game via a labeled directed graph (which we call multi-agent game-graph .)
and, therefore we call our games multi-agent graph-games. We gave a brief introduction
into the multi-agent graph-games in our earlier work [Yakhnis, Stilman 1995], where the
origins of the notion of the alternating two player graph games were discussed at some
length. Here we would like to list the works we are building upon. They are [Berge 1957;
Büchi 1981; Büchi, Landweber 1969; Gurevich, Harrington 1982; Yakhnis, A., Yakhnis
V. 1990, 1993; McNaughton 1993; Zeitman 1994].

2.2. The Agents and Their Moves
We call the agents (i.e., players) A0, ..., Am–1. In case of two player games, following

Gurevich-Harrington [1982] (GH), we shall sometimes call the players 0 and 1. In this
case, if  Ω  is a player then  1–Ω  is the opponent. In some examples we'll call the two
players Spot and Stripe, and for chess we'll use the traditional White and Black.

There is a disjoint collection of finite alphabets Σ0,   , Σm-1. Each symbol of the
alphabets represents an action changing the state of the game. Each agent (i.e., player) Ai



is associated with the alphabet, Σi. We'll informally refer to the symbols from the
alphabet associated with an agent as the singleton-moves of that agent. A packet-move is
a vector f = (w0,   , wm-1), where wi is a vector of singleton-moves from Σi. The vector wi
is called the component-move of Ai in t. The game proceeds as a series of packet-moves
as follows:
• The agents make a packet-move by each agent grabbing a (possibly empty) vector

(i.e., finite sequence) of symbols from his/her alphabet and placing it into a packet-
move, which, in turn, is placed to the right of the previous moves;

• The resulting sequence of packet-moves is called a play;
• The collections of symbols that a player is allowed to grab at any given state of the

game are controlled by the game rules;
• A packet-move results in application to the game state of all the actions in the packet;
• The rules sometimes give an agent an option to skip a move even when a non-empty

move is permitted for the agent;
• The rules are given by the game graph .

2.3. Multi-Agent Game-Graph
For the graph below we need two sets, PM, “packet-moves” for labeling edges, and

PR, “packet-rules” for labeling vertices.
• PM = VΣ0× ... ×VΣm–1, where VΣi is the set of all vectors (i.e., finite sequences)

from Σi for i = 0, ..., m–1. PM is the set of all possible packet-moves. We do not
differentiate between the empty set and the null finite sequence and we designate the
empty packet-move (∅, ..., ∅) by ε;

• PR = P+VΣ0× ... ×P+VΣm–1, where P+X is the set of all non-empty subsets of X. We

call the elements of PM the packet-rules. We designate the empty packet-rule ({∅},

..., {∅}) by Λ. This rule forbids making moves from the respective vertices.

Now we may define the multi-agent game graph as follows.
• it is a finite or infinite directed graph with a one or more initial vertices;
• each vertex is labeled by an element of PR and each edge is labeled by an element of

PM;
• each vertex labeled by Λ is a leaf;

• for any vertex v labeled by a packet-rule (t0, ..., tm–1) ≠ Λ:

- each edge outgoing from v is labeled by a unique packet-move from t0× ... ×tm–1;

- for each packet-move from t0× ... ×tm–1 there is
a unique edge outgoing from v labeled by it;

a y

z

b
wy

Λ

Λ

Fig. 1. A Game Graph for Spot
playing with Stripe

- if ε∈t0× ... ×tm–1, then the edge labeled by ε
points to v.

PROPOSITION A vertex is a leaf if and only if it
is labeled by Λ.

For alternating games it is sufficient to label each
vertex by the player making moves from it. For
example the game-graph on Figure 1 represents a
strictly alternating two-player game without skips. The
vertices are labeled by spots or stripes, the alphabet for
Spot is {a, y, z} and the alphabet for Stripe is {b, w}.



2.4 Playing the Game as Running a State Transition System (STS)
Now we can give a rigorous definition of the game on a multi-agent game-graph. At

each moment of the game exactly one vertex would be declared as “current” (we call it
the current state of the game). The game starts at an initial vertex (i.e., it is declared
“current” at the start). Assume that the current vertex v is labeled by a packet-rule (t0, ...,

tm–1) ≠ Λ. Each agent Ai chooses an element wi∈t0 (i.e., wi would be a collection of

singleton moves from Σi) as a component-move, thus forming a packet-move p = (w0, ...,
wm–1). After this packet-move is completed, the new current state of the game is defined
as the vertex pointed to by the unique edge d outgoing from v such that d is labeled by p.
Then the process is repeated, either until a leaf is met or ad infinitum.

The winner of the play is selected according to the winning conditions associated with
the agents. Below we'll discuss how the winning conditions are formalized.

The game graph is associated with the following STS. Its states are the graph's
vertices, the set of initial states consists of the initial vertices, the final states are leafs, the
transition functions are packet-moves and the transition rules are formed as follows.
Given a packet-move, say f, its applicability set is the set of all the vertices having an
outgoing edge labeled by f. The above process of playing the game corresponds to
forming the system run.

2.5 Formal Plays, Game Trees and Compatible Game Graphs
The sequence of all the packet-moves made during the play associated with an initial

vertex v0 constitute a formal play. For example, for an alternating two player game it may
look as a0, b1, a2, ..., an, bn+1, where a0, a2, ..., an are the moves of 0 and b1, b3, ..., bn+1
are the moves of 1. A string of packet-moves forming a prefix (i.e. finite initial segment)
of a formal play is called a position of the game. Due to Gurevich-Harrington (1982), we
call the set of all possible legal positions of the game the game tree. The tree structure is
imposed by the usual properties of strings of symbols. For example, the root of the game
tree is the empty string. It is easy to see that the game tree is a particular form of the game
graph.

PROPOSITION. There is a unique homomorphism (of labeled directed graphs) from
the game tree (associated with an initial vertex v0) onto the game graph with the root
mapped into v0.

Proof: Map the empty string into v0. For each legal position of length one, say f there
is a unique edge, say d, labeled by f. So, map f into the vertex pointed to by d. Etc., etc.

We call such a homomorphism the game graph covering map (GGC). Obviously, two
game graphs corresponding to identical game trees define the same game and encode the
same game rules. We will call such game graphs compatible.

2.6. The Winning Condition
Formally speaking, a play is just a path in a game tree (either infinite or ending by a

leaf). If T is the game tree, we'll designate the set of all its paths as Path(T). To indicate
when an agent Ω wins, it is enough to identify the set of all such paths in Path(T), say W,
called the winning set for Ω, where we assign the victory to Ω. Within the theory of two
player games, it is usually assumed that the winning sets of players are complementary
(Gale-Stewart 1953). Such games are called win-loose games. For general multi-agent
graph games it is usually not the case (e.g., in chess no-win situation is possible). Thus, in
our games each agent Ai is associated with its winning set Wi. We call the list (A0, W0;
...; Am-1, Wm-1) the combined winning condition. Finally, in our terminology a game is a
pair 〈G, AW〉, where AW is the combined winning condition.

Gurevich and Harrington (GH) (1982) introduced a very convenient notation for the
winning sets in terms of game trees. We'll restate their notation in terms of game graphs.
Let T be the game tree, G be the game graph, and h: T→G be the GGC. Let Q be a subset



of the set of all vertices of G. (Below we will abbreviate such statements by saying that Q
is a subset of G.) Then [Q] designates the set of all paths in T intersecting with h–1(Q)
infinitely often. In addition, in (Yakhnis, A., 1990; Yakhnis, V., 1990), the set of all paths
in T intersecting with h–1(Q) at least once was designated as (Q). Now, let Q1,...,Qn be
subsets of the game graph G. GH considered winning sets in the form of a Boolean
combination of the sets  [Q1],...,[Qn]. A set of the form (Q) may often be represented as
[Y] for some Y. However, when the finite plays are allowed, it is convenient to explicitly
add to the winning set some Boolean combinations of (Q1),...,(Qn). We will still refer to
such combined winning sets as GH winning sets and we will call the sets Q1,...,Qn their
GH kernels. We expect that specifications of most of the practical systems would be
covered by the above winning conditions.

For example, in chess if CheckMateB is the set of all board states where the Black
King is under checkmate, then the winning condition for White is (CheckMateB).
Suppose now that we have two processes, P0 and P1, and that we would like to write a
monitor running these processes in perpetuity without starving either of them. If ExecPi is
the set of all system states where a new instruction from Pi has completed its execution

(for i = 0, 1), then [ExecP0]∩[ExecP1] is the winning condition for the monitor. Finally,
recall from the introduction the discussion of a kind of winning conditions called
“constraint”. Each constraint has a form (Q)c, where Q is some subset of the game graph
G and “c” is the complementation operator in Path(G).

2.7. Strategies
We'll need the following convenient notation. If v is a vertex on a game graph G, we

designate as G(v) the set of children of v in G (i. e., all the vertices w with an edge going
from v to w). In addition, if b is the label of an edge d outgoing from v, then G(v, b)
designates the vertex at which d is pointing.

Let Ai be an agent associated with its winning set Wi and a set of moves Σi be its set
of moves. We'll call a vertex which label includes Ai an Ai-vertex and we'll designate the
set of all such vertices as Ver(Ai). We'll call a function f:Ver(Ai)→Σi a deterministic Ai-

strategy if for every vertex v∈Ver(Ai) which is not a leaf, f(v) is a label of an edge
outgoing from v. The set of vertices consistent  with  f  is defined as follows.
• the root  e  is consistent with  f;
• if v is consistent with f and v∉Ver(Ai) then all children of v are consistent with f;

• if v is consistent with f and v∈Ver(Ai) then G(v, f(v)) is consistent with  f.

We say that a play is consistent with  f  if all its prefixes are consistent with  f. We
say that  Ai  wins  〈G, W〉  using  f  if every play consistent with  f  is in  W. If Ai wins the

game using f, we call f a winning  Ai-strategy. Finally, we say that  Ai  wins  〈G, W〉 if
there is a winning  Ai-strategy. However since for multi-agent graph-games the usual
determinacy theorem s do not apply, we are more concerned with winning individual
plays, rather than the whole game.

In addition to deterministic strategies, it is sometimes convenient to use
nondeterministic strategies, as was first demonstrated in (Gurevich-Harrington 1982) and
later in (Yakhnis-Yakhnis 1990). However, nondeterministic strategies are beyond the
scope of this paper.

2.8. State-Strategies
We'll show how to deal with potentially infinite nature of plays without having to

memorize the entire prehistory of the play. The state strategies were first introduced in
several works of Büchi and Büchi-Landweber (e. g., see Büchi 1981, Büchi-Landweber
1969). Independently, (Gurevich-Harrington 1982) introduced “strategies with restricted



memory” which fulfilled a similar purpose. Büchi and GH were first to show that for any
game with GH winning condition there is a winning strategy with restricted memory.
This result is sometimes called “restricted memory determinacy for two player games
with GH winning conditions”. These strategies were further developed in (Yakhnis, A.
1989, Yakhnis V. 1989, Yakhnis-Yakhnis 1990, 1993, Nerode-Yakhnis-Yakhnis 1992,
1993) where nondeterministic state-strategies and “strategies with restraints” were first
introduced.

We will use here a modification of Büchi's strategies from (Yakhnis, A. 1989,
Yakhnis V. 1989). A state strategy for a player Ai is an input-output automaton accepting
the packet-moves of as an input and outputting moves of Ai . The input is used for
memorizing some information about the play (limited by the memory of the automaton),
whereas the output is used to guide the behavior of Ai during the play.

a0 b0 a1 b1 a2

s0 s1 s2labeled
transition

labeled
transition

b0 b1

output

output

output

input

input

...

Fig. 2. Application of a state-strategy.

A state-strategy for alternating two
player games is illustrated on Figure 2.

As was stated in [Yakhnis, Stilman
1995], the “complex systems” defined
in [Stilman 1981, 1985, 1992] are in
fact multi-agent graph-games and the
strategies defined there the state-
strategies intended to win individual
plays (they are not the winning
strategies in the above sense). Thus,
our long-range intention is to study

those strategies. In many practical situations the winning strategies may have too high
time complexity for a successful usage.

2.9. Registers
In (Yakhnis, A. 1990 and Yakhnis-Yakhnis 1993), it was shown how to combine

smaller game graphs encoding different aspects of the game into one game graph by
viewing them as automata (or STS in our present view). For now it is enough to know
that intuitively such combination is equivalent to running the component STS
simultaneously.

each move
of Stripe

each move
of Spot a y

z

b

w

y
Λ

Fig. 3. The Turn Register for Spot
playing with Stripe

Fig. 4. The main graph for Spot
playing with Stripe

It is sometimes convenient to decompose the game graph into a combination of the
“main” graph (which is the transition table of the “main” STS) and one or more registers.
By a register we mean a simple automaton recording some distinctly separate aspect of
the game. Combining back the main graph and the registers, as was done in [Yakhnis, A.,
1990; Yakhnis, A., Yakhnis, V., 1993], would give us a game graph compatible with the
original game graph. In addition, registers (such as Castling Register) were used in
practical applications of the LG Complex Systems developed by B. Stilman in 1980s.

The most common register is Turn Register which tells whose turn it is to move.
Informally, both the register and the main automaton are running during the play. The



former tells whose turn it is to move whereas the latter tells which moves are available for
this player. When the Turn Register is used, the definition of the main graph is the same
as the one for the game graph, except that the requirement “each vertex is labeled by a
unique player” may be omitted. This view allows the main graph to be significantly
smaller than the game graph. For example, a combination of the main graph on Figure 4
with the Turn Register on Figure 3 would give us the game graph on Figure 1.

3. THE LINGUISTIC GEOMETRY (LG) APPROACH

3.1. An intuitive View on the LG
Linguistic Geometry (LG) [Stilman 1981, 1985, 1992, etc.] is an approach to finding

strategies likely to win individual plays for multi-agent graph-games using the following
three features:
• each state has a rich geometrical structure such as board, pieces, reachability

relations, etc. (hence, the “Geometry” portion of the name);
• certain formal grammars are utilized for convenient building of state-strategies

(hence, the “Linguistic” portion of the name);
• formalization of search heuristics of the highly-skilled human experts as a major

mechanism for forming state-strategies. This promotes the decomposition of a
complex control system into a dynamic hierarchy of subsystems, thus solving
intractable problems by dramatically reducing the search.

In addition, since the process of playing a multi-agent graph-games may be
understood as running the corresponding STS, LG may also be viewed as an approach to
control the behavior of STS with a particular structure of states. In our previous work
[Yakhnis, Stilman 1995] we discussed the origins of LG and provided a slightly more
advanced description (in comparison with [Stilman 1981, 1985, 1992]) of the geometrical
structure of the current state of the game called “complex system”. In this paper we are
recapturing the definition of the complex systems from [Yakhnis, Stilman 1995]; in our
future papers we will provide a new outlook on the formal grammars from [Stilman 1981,
1985, 1992, etc.] using such notions as first order theories and algebras with explicit
types, STS, and objects (see [Yakhnis, V., Yakhnis, A., to appear]). Also, in our next
paper we will discuss the notion of “shortest trajectories” as the simplest human
heuristics from LG, leaving more complicated heuristics for a future work.

3.2. The LG Complex Systems

3.2.1. The Quadruple
An LG Complex System, say , is the following quadruple:

 = 〈E, , Reg, AW〉
where

• E The environment algebra, where the board X and the set of pieces P are
among the sorts and the reachability relation R and the “worth” of pieces
function v are in the signature;

• the STS built from E as described in the following sections;
• Reg the register (see Section 2.9);
• AW the winning condition of the form (A0, W0; A1, W1; ...; Am–1, Wm–1), where

Ai is an agent and Wi is his/her winning condition for i = 0, ..., m–1.

We will show that in combination,  and Reg define a multi-agent game graph G.

Thus a Complex System contains a multi-agent graph game 〈G, AW〉 as a component.



3.2.2. The Environment Algebra E
The algebra E contains at least the following sorts:

• X the space of locations {x0, ..., xk–1} for placing the pieces upon, also called
the board;

• A the set of agents A0, ..., Am–1;
• P the set of all pieces represented as a disjoint union of collections of sets of

pieces P0, ..., Pm–1 assigned, respectively, to agents A0, ..., Am–1;
• Pi the set of all pieces assigned to agent Ai, where i = 1, ..., m–1;
• Z the set of all integers;

• DISP the set {d: X→PP | ∀x,y∈X. x≠y ⇒ d(x)∩d(y) = ∅} of all possible
placements of the pieces on the board, where a piece may occupy at most one
location. It serves as the set of states for  and we will call its elements “the
states of the board”.

• S the set of states for Reg. We do not have any assumption about its structure.

The algebra E contains at least the following relations and functions:
• R⊆P×X×X the reachability relation, where R(q, y, z) means that y and z are

distinct locations and that the piece q may be relocated from the location y to
the location z in one move, provided that there are no additional obstacles. For
example, in chess if z is unoccupied and if q is not a Knight then any piece
placed between y and z serves as an obstacle. The statements describing the
absence of obstacles are included within the applicability conditions for the
transition rules;

• v: P→Z the “worth” of pieces function assigning to each piece an integer
value;

• Agent: P→A the function assigning to each piece its agent;

• Apply: DISP×X→PP the application of elements of DISP function, where
Apply(d, x) = d(x). This function allows to treat DISP as a set of functions
while preserving the first order properties of E. We would usually abbreviate
Apply(d, x) as d(x);

The algebra E contains at least the following constants:
• names for all the locations: x0, ..., xk–1;
• names for all the agents: A0, ..., Am–1;
• names for all the pieces: pi,0, ..., pi,ni, where i = 1, ..., m–1.

In addition to the elements of signature introduced above, E may have some
additional structure:
• Board: In chess (where locations are sometimes called squares) each square not

on the border of the board has eight adjacent squares corresponding to eight possible
directions of movement, the board is divided into two disjoined subsets, the White
squares and the Black squares, etc. Also, for a complex system describing robotic
vehicles, the board may be called Terrain and it may include the subsets Forest,
Swamp, Highway.

• Pieces: For robotic vehicles we may have a subset Tanks with pieces Patton (for
agent USA), Centurion (for agent UK), and T-72 (for agent Russia), and a subset Cars
with pieces Ford (for agent USA), and Volvo (for agent Sweden).

The algebra E satisfies at least the following axioms:
• Pi = {pi,0, ..., pi,ni} for i = 0, ..., m–1;

• P0, ..., Pm–1 are disjoint;



• P = ∪0≤i<mPi;
• X = {x0, ..., xk–1};

• ∀d∈DISP ∀x,y∈X. x≠y ⇒ d(x)∩d(y) = ∅;
• Agent(pi,j) = Ai for i = 0, ..., m–1 and j = 0, ..., ni.

3.2.3. The STS  and the Register Reg

3.2.3.1. The States
Both  and Reg are finite state machines, but, whereas Reg has very simple structure

and is intended to keep track of some simple events, like turns or castling of Black and
White Kings,  includes a multitude of information about the board, the pieces, etc. The

state structure of  and Reg is as follows:
Reg

The Set of States DISP S
The Set of Initial States DISPin ⊆ DISP Sin ⊆ S
The Set of Final States DISPfin ⊆ DISP Sfin ⊆ S

3.2.3.2.        The Singleton-Moves, the Component-Moves, and the Packet-Moves
A singleton-move of an agent is the smallest individual action allowed for the agent

to perform on the board. The collection of all possible singleton-moves of an agent
corresponds to the alphabet associated with an agent in terms of graph-games. For the LG
Complex Systems, there are the following categories of singleton-moves:
• removal of a piece from a location;
• placement of a piece in a location;
• changing the state of a piece (when pieces are viewed as state machines);
• changing the state of a location (when locations are viewed as state machines).

In this paper we will discuss only examples of the removal and placement of pieces,
leaving the two other kinds of singleton-moves for the future works. Designating the
current state of the board as D, we will represent the removal of a piece p from a location
x as the assignment D(x) := D(x) — {p}, and the placement of a piece q in a
location y as the assignment D(y) := D(y) ∪ {q}. By their definition, the
singleton-moves may be regarded as partial unary operations on DISP. We assume that
they may be also regarded as partial unary operations on S.

A component-move is a (possibly empty) finite sequence of singleton-moves. Given a
component-move w = (h0, ..., hk–1), we associate it with a partial unary operation
hk-1˚ ...˚ h0 (or h0; ...; hk-1 in terms of the “;”-connector). Assume that we have two
agents, Stripe and Spot. We would like to write down the following component-move g
of Stripe “relocate a Stripe's piece q0 from a location y0 to a location y1 and
simultaneously remove a Spot's piece q1 from the location y1”. It could look as the
following sequence of singleton-moves:

D(y0) := D(y0) — {q0};
D(y1) := D(y1) — {q1};

D(y1) := D(y1) ∪ {q0}.

A packet-move of the agents A0, ..., Am–1 is a vector f = (w0, ..., wm–1), where ti is a
component-move of the agent Ai. We assume that somehow f may be regarded as a
partial unary operation on DISP and on S constructed via operations w0, ..., wm–1 and



that f(D) and f(s) are defined if and only if wi(D) and wi(s) are defined for all i = 0, ...,
m-1.

3.2.3.3. The Transition Rules TR
Now we'll define the set of transition rules TR. Each transition rule is a pair of the

form (Sw, w), where w is a component-move and Sw is a subset of DISP×S, called the
applicability set for w. Below we represent a current state from DISP as D and the
current state from S as s. We also say that a transition rule (Sw, w) (or a component-move

w) is applicable to a combined state (D, s), if (D, s)∈Sw. Finally, we say that a packet-
move f is applicable to (D, s) if all its component-moves are applicable to (D, s).

For example, let us describe the applicability set for the component-move g in the
previous subsection. Assume that we have a turn register and that a player Ω may make a
move in a register's state s if and only if the predicate Turn (Ω, s) holds. Also assume that
the predicate Obstacle(p, x, y) holds if and only if there is an obstacle for p between x and
y. Then the set Sg may be defined by the following predicate:

Turn(Stripe, s) ∧ q0∈D(y0) ∧ R(q0, y0, y1) ∧ ¬Obstacle(q0, y0, y1) ∧ q1∈D(y1)

We now can formally define a combined system run for  and Reg. It is a finite or

infinite alternating sequence of pairs from DISP×S and the packet-moves of the form
(D0, s0), f0, (D1, s1), f1, ..., (Di , si), fi, ... and such that:
• the leftmost pair is a pair of initial states;
• if a pair in the sequence contains a final state, the sequence is finite and the pair

containing the final state is the rightmost pair;
• if the sequence does not contain a final state, the sequence is infinite;
• each state in the sequence, except the initial state, is the result of applying the

preceding transition function to the previous state according to the transition rules as
follows. Suppose that (Di, si), fi, (Di+1, si+1) are in the sequence. Then fi is applicable
to (Di, si) and Di+1 = fi(Di) and si+1 = fi(si).

In order for the system run not to be abnormally terminated, we require that the
transition rules must satisfy two crucial properties, namely, validity and completeness:
• Validity:

for each transition rule (Sw, w), if (D, s)∈Sw, then D∈Dom(w) and s∈Dom(w);
• Completeness:

if (D, s) is a reachable pair, then either one of (D, s) is a final state, or there is a
transition rule, say (Sw, w), with non-empty w, such that (D, s)∈Sw.

3.2.4. The LG Complex Systems as Multi-Agent Graph-Games
In order to verify that the combined system runs correspond to plays in an multi-agent

graph-game, we would like to show how to create vertices, edges, and labels for the game
graph from the descriptions of  and Reg. We say that the pair (D, s) is a reachable pair
if it belongs to some combined system run. The set of vertices of the game-graph G is
exactly the set of all reachable pairs (D, s). Since, given a packet-rule (t0, ..., tm–1)
labeling a vertex v of a game-graph, there is a 1-1 correspondence between the edges
outgoing from v and t0× ... ×tm–1, we would completely define the game-graph G if:
1) given a pair (D, s) we would define its label (t0, ..., tm–1);

2) given f∈t0× ... ×tm–1, we would define f as a partial unary operation f: DISP→DISP
and f: S→S and show that D∈Dom(f) and s∈Dom(f).



In addition, in order to comply with the definition of the system run given in the
previous section, we would have to show that:
3) given a pair (D, s), it is labeled by Λ if and only if one of D, s is a final state.

The rest is obvious.
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