
NETWORK LANGUAGES FOR COMPLEX
SYSTEMS

D R A F T*

BORIS STILMAN
Department of Computer Science & Engineering, University of Colorado at Denver, Campus Box 109

 Denver, CO 80217-3364. E-mail: bstilman@cse.cudenver.edu

Abstract—In this paper we describe a research on two-dimensional geometrical structures for
complex systems to accomplish applications to robotics, process planning and control,
scheduling, decision support, etc. This research includes the development of tools for
representation and reasoning about hierarchical networks of paths that are inherent for complex
real-world systems. It relies on the formalization of search heuristics of high-skilled human
experts which have resulted in the development of successful applications in different areas. The
proposed approach is based on a broad application of the theory of formal languages and
grammars as well as theories of formal problem-solving and planning employing the first-order
predicate calculus. A performance of implementations is considered in detail.

1. Introduction

Many important practical problems can be considered as optimization problems for complex
systems. The difficulties we meet trying to find optimal operation for real-world complex systems
are well known. While the formalization of the problem, as a rule, is not difficult, an algorithm that
finds its solution usually results in the search of many variations. For small-dimensional "toy"
problems a solution can be obtained; however, for most real-world problems the dimension
increases and the number of variations increases significantly, sometimes exponentially, as a
function of dimension [1]. Thus most real-world search problems are not solvable employing exact
algorithms in a reasonable amount of time.

A development of approximate algorithms for such problems is a necessity. There have been
many attempts to design different approximate algorithms. One of the basic ideas is to decrease the
dimension of the real-world system following the approach of a human expert in a certain field, by
breaking this system down into subsystems, to study these subsystems separately or in
combinations, making appropriate searches, and eventually combining optimal solutions for the
subsystems as an approximately optimal solution for the whole system [2]. These ideas have been
implemented for many problems with varying degrees of success, but each implementation was
unique. There was no general approach for such implementations. Each new problem must be
carefully studied and previous experience usually can not be applied. On the other hand, every
attempt to evaluate the computational complexity and quality of a pilot solution requires
implementing its program, which in itself is a unique task for each problem.

Here we consider a formal, general approach for a certain class of search problems that
involves breaking down a system into dynamic subsystems. This approach does not immediately
give us powerful tools for reducing the search in different complex problems. It does give us a set
of tools to be used for the formal description of problems where successful results have already
been achieved due to the informal, plausible reasoning of some human expert. This reasoning
should involve the decomposition of a complex system into a hierarchy of dynamic interacting
subsystems. The proposed approach permits us to study the secondary multi-level system
formally, evaluate the complexity and quality of solutions, improve them, if necessary, and
generate computer programs for applications. This approach provides us with an opportunity to
transfer formal properties and constructions discovered in one problem to a new one and to apply

* The final version was published as Stilman, B., Network Languages for Complex Systems, An International
Journal: Computers & Mathematics with Applications, Vol. 26, No. 8, pp. 51-80, 1993.

2

the same tools to the new problem domain. It actually looks like an application of the methods of a
chess expert to a maintenance scheduling problem and vice versa. But what about guaranties of
success? The guaranties reside in deeper studies of these methods, in the discovery of inner
properties which brought us to a success in a certain class of complex systems.

The main idea of the approach considered in this paper is as follows. A set of dynamic
subsystems might be represented as a hierarchy of formal languages where each "sentence" (a
group of "words" or symbols) of the lower level language corresponds to the "word" of the higher
level one. This is a routine procedure in our native language. For example, the phrase "A man who
teaches students" creates a hierarchy of languages. A lower level language is a native language
without the word "professor." The symbols of this language are all the English words (except
"professor"). A higher level language might be the same language with one extra word "A-man-
who-teaches-students". Instead, we can use the word "professor" which is simply a short
designation of this long word.

To keep track of the origin of this approach, let us refer to the ideas of syntactic methods of
pattern recognition developed by Fu [3, 4], Narasimhan [5], and Pavlidis [6], and picture
description languages by Shaw [7], Feder [8], Rosenfeld, Phaltz [9, 29]. The idea of linguistic
representation of complex real-world and artificial images was transformed into the idea of similar
representation of complex hierarchical systems. However, the appropriate languages should
possess more sophisticated attributes than languages usually used for pattern description. They
should describe mathematically all of the essential syntactic and semantic features of the system and
search and be easily generated by certain controlled grammars. An origin of such languages can be
traced back to the origin of SNOBOL-4 and the research on programmed formal grammars and
languages by Knuth [10], Rozenkrantz [11], and Volchenkov [12]. A mathematical environment
for the formal implementation of this approach was developed following the theories of formal
problem solving and planning by Nilsson, Fikes [13], Sacerdoti [14], and McCarthy, Hayes [15]
on the basis of the first order predicate calculus. To show the power of this approach it is important
that the chosen model of the hierarchical system be sufficiently complex, poorly formalized, and
has successful applications in different areas. The chosen informal model was developed and
applied to scheduling, planning, and computer chess by Botvinnik, Stilman, and others [16].

An application of the hierarchy of languages to the chess model was implemented in full as
program PIONEER [16]. For power equipment maintenance the hierarchy was implemented in a
number of computer programs being used for maintenance scheduling all over the USSR [17, 18,
19].

2. A Discussion of Experimental Results

In order to evaluate the experiments with implementations we present here a brief discussion
about search algorithms. We look for approximate algorithms that reduce B, the branching factor
[20], especially, those algorithms which make B close to 1. Such algorithms should be considered
as extremely goal-driven with minimal branching to different directions.

Different search algorithms were designed in order to reduce the branching factor. They are
dynamic programming, various types of branch-and-bound algorithms, etc. For opposing games
like chess the most popular algorithms are various search algorithms with alpha-beta pruning [20].
They are implemented in the most powerful computer chess programs, e.g., in all the programs
which are current and former World Computer Chess Champions. It was proved that these
algorithms, in the best case, theoretically can reduce the branching factor to B0.5[20]. Supposing
that an arbitrary chess position in average contains about 40 moves permitted according to the
chess rules, alpha-beta pruning can reduce this number to approximately 6. Still we have an
exponential growth with a very high base (high branching factor). Thus chess problems that
require a deep search, e.g., the search to the depth of 20 or more plies, would require enormous
amounts of processing time to be solved. We encounter the same problem but in a greater scope
when we apply search algorithms with alpha-beta pruning (or branch-and-bound algorithms) to
real-world problems, e.g., when we look for an optimal operation of complex systems. In such
problems the number of possibilities in each state usually is far more than 40, so an alpha-beta or

3

branch-and-bound reduction of the branching factor does not provide a solution in a reasonable
processing time.

 Returning to the discussion of experiments with the PIONEER chess program, let us
consider the values of branching factor as well as some other parameters of the search [16]. The
search tree generated by PIONEER while solving the R. Reti endgame contained 54 nodes (T =
54), hence, taking into account that the length of the solution L = 6 here, we have B~1.65. In the
Botvinnik-Kaminer endgame the total number of nodes generated by the program was equal to
145, maximum length L =12, hence B~1.34. Although both endgames are solvable by
conventional chess programs, these results are very interesting in the framework of substantial
reduction of the branching factor.

Among the variety of complex problems solved by the PIONEER, we shall consider two.
Both are not solved yet by the conventional chess programs: alpha-beta pruning failed to provide a
substantial reduction of the branching factor, and so the expected processing time would exceed a
reasonable amount.

The first problem is the G.Nadareishvili endgame [16]. The total number of nodes generated
was T = 200, while the depth of the search required to find a solution is equal to 25!
Consequently, B~1.14. At the initial position of this endgame there are 10 pieces, and the
unreduced branching factor might be estimated as B~15. The second complex problem we would
like to consider is the middle-game position in a game by Botvinnik-Capablanca. This position
contains 19 pieces and the unreduced branching factor might be estimated as B~20! The depth of
the search should not be less than 23. The PIONEER generated a search tree of 40 nodes with the
branching factor B~1.05.

Let us consider experiments with maintenance scheduling programs. The program for
monthly scheduling generated different search trees depending on the number of demands in each
month and a list of other constraints [17, 18]. The number of demands varied from 118 to 405 in
different months. The total number of nodes never exceeded 165. With 31 as the maximum length
of the solution, a reduced branching factor in these problems never exceeded 1.06. (To understand
these results we should take into account that the program aggregated some of the demands. In
spite of this the unreduced branching factor varied from 50 to 100.)

The experiments with the program for annual maintenance scheduling showed that even this
higher dimensional problem can be solved employing the proposed approach [19]. The power
equipment maintenance plan for the USSR United Power System was computed for 1121
demands. Each demand contained 12 parameters, including resources requirements and different
types of constraints. Two types of resources were considered: the power reserve and the
maintenance personnel. The last one was broken into different specialties. Obviously for the annual
plan the length of the solution was 365! The reduced branching factor never exceeded 1.005.

Evaluation of the quality of a solution for the chess problems is not hard. The variant-
solution (or subtree) is known. A computer should find it and prove it is optimum. For
maintenance scheduling problems the optimal plan is unknown but the results achieved can be
evaluated according to the optimum criterion: maximum total demanded power of the units being
actually maintained. For monthly scheduling the total demanded power of the solutions varied from
91% to 99% of the theoretical optimum value. For annual scheduling the total demanded power of
the solutions was equal to 83% of the total demand while a theoretical optimum was unknown.

The comparison with analogous scheduling programs based on branch-and-bound (or
dynamic programming) search strategies showed the advantage of our approach for monthly
planning; the quality of the plan was about the same, but the computation time in our case was
essentially shorter. In all experiments the branching factor of the trees generated by conventional
programs was substantially higher. For yearly planning problems the competition could not even
happen, because conventional programs could not overcome in a reasonable time the
“combinatorial explosion” for such a higher-dimensional problem [17, 18, 19].

The results shown by these programs in solving complex chess and scheduling problems
indicate that implementations of the hierarchy of languages resulted in the extremely goal-driven

4

algorithms generating search trees with a branching factor close to 1. In order to discover the inner
properties of human expert heuristics, which were successful in a certain class of complex
systems, we develop a formal theory, the so-called Linguistic Geometry [21–26]. While the survey
of the whole theory and results on one-dimensional structures were presented in various papers
[21–25], the following should be considered as a contribution to the Two-dimensional Linguistic
Geometry and applications (see also [26]).

3. Informal Review

The idea of a hierarchy of formal languages has been implemented in full for the problems
which can be stated as problems of optimal functioning of a Complex System, a twin-set of
elements and points where elements are units moving from one point to another. The elements are
divided into two opposite sides: the goal of each side is to maximize a gain, the total value of
opposite elements withdrawn from the system. Such a withdrawal happens if an element comes to
the point where there is already an element of the opposite side: in this case opposite element
should be withdrawn, e.g., as in a game of chess.

According to [16], a one-goal, one-level system should be substituted for a multi-goal multi-
level system by introducing intermediate goals and breaking it down into subsystems striving to
attain these goals. The goals of the subsystems are individual but coordinated with the main mutual
goal. Each subsystem includes elements of both sides; the goal of one side is to attack and gain
some element (a target), while the other side tries to protect it. Thus, a subsystem called a Zone is
the set of elements of both sides with their trajectories (paths). The pruning criteria for the search
and evaluation function are coordinated with the intermediate subsystem's goals and the main goal
of the system. Obviously, problems studied in [16] are not the only class of problems eligible for
creating a hierarchy of formal languages.

 Let us review the formal linguistic representation. Lower level subsystems are called the
trajectories of points for moving elements along these points to achieve certain local goals.
Trajectories are strings of a lower level formal language, the Language of Trajectories. Higher level
subsystems are well-organized networks of trajectories for moving elements along them to achieve
cooperative goals, specific for each network. These networks, called Zones, are represented as
strings of a yet higher level language, the Language of Zones; each symbol of the string represents
a trajectory, i.e., the string of a lower level language.

The system functions by moving from one state to another; that is, the movement of an
element from one point to another causes an adjustment of the hierarchy of languages. This
adjustment can be represented as a mapping (translating) to some other hierarchy. Thus, the
functioning of the system, in a process of the search, generates a tree of translations of the
hierarchy of languages. This tree is represented as a string of the highest level formal language, the
Language of Translations, which itself is a member of the family of languages corresponding to
various well-known search algorithms: depth-first search, breadth-first search, alpha-beta and
others. Every string of the Language of Translations (corresponding to some search tree) contains
a solution to the specific search problem.

Next we consider the specific class of formal grammars to be used for the formal definition
and studies of trajectory network languages, in particular, the Language of Zones.

4. Controlled Grammars

In pattern recognition problems, a linguistic approach was proposed [9-15] for
representation of hierarchic structured information contained by each pattern, i.e., for describing
patterns by means of simpler sub-patterns. This approach brings to light an analogy between the
hierarchic structure of patterns and the syntax of languages. The rules controlling the merging of
sub-patterns into patterns are usually given by the so-called pattern description grammars, with the
power of such description being explained by the recursive nature of the grammars. Using similar

5

approach for generating trajectories [22–25] and trajectory networks, we make use of the theory of
formal grammars in the form developed in [10–12]. We begin with the definition of the class of
grammars to be used.

Definition 4.1. A controlled grammar G is the following eight-tuple:

G=(VT, V N, V PR, E, H, Parm, L, R) ,
where

VT is the alphabet of terminal symbols;
VN is the alphabet of nonterminal symbols, S (from VN) is the start symbol;
VPR is the alphabet of the first order predicate calculus PR:

VPR = Truth UCon UVar UFunc UPred U{symbols of logical operations},
where

Truth are truth symbols T and F (these are reserved symbols);
Con are constant symbols;
Var are variable symbols;
Func are functional symbols (Func = Fcon UFvar). Functions have an

attached non-negative integer referred to the arity indicating the number of
elements of the domain mapped onto each element of the range. A term is
either a constant, variable or function expression.
A function expression is given by a functional symbol of arity k, followed
by k terms, t1, t2,..., tk , enclosed in parentheses and separated by
commas;

Pred are predicate symbols. Predicates have an associated positive integer
referred to as arity or “argument number” for the predicate. Predicates
with the same name but different arities are considered distinct. An atom is
a predicate constant of arity n, followed by n terms, t1, t2,..., tn, enclosed
in parentheses and separated by commas. The truth values, T and F, are
also atoms. Well-formed formulas (or WFF) are atoms and combinations
of atoms using logical operations;

H is an interpretation of PR calculus on the set E, i.e., a certain assignment of the
following form: each

– constant from Con is assigned to an element of E;
– variable from Var is assigned to a non empty subset of E; these are

allowable substitutions for that variable;
– predicate Q from Pred of arity n is assigned to a relation on the set E of

arity n, i.e., to a mapping from En into {T, F};
– function f of arity k is assigned to a mapping h(f)from D into E, where

D belongs to Ek. If f is from Fvar, then D and the mapping h(f) vary
in the process of derivation in the grammar G.

Thus, the interpretation H allows us to calculate the value of any function (it lies in E)
and any predicate (F or T), if the values of all variables contained by them are specified.

Parm is a mapping from VT UVN in 2Var matching with each symbol of the alphabet
VT UVN a set of formal parameters, with Parm(S)=Var;

L is a finite set called the set of labels;
R is a finite set of productions, i.e., a finite set of the following seven-tuples:

(l , Q, A—>B, π k , π n , FT, FF) .
Here

l (from L) is the label of a production; the labels of different productions are
different, and subsequently sets of labels will be made identical to the sets
of productions labeled by them;

Q is a WFF of the predicate calculus PR , the condition of applicability of

6

productions; Q contains only variables from Var which belong to
Parm(A);

A—>B is an expression called the kernel of production, where
A is from VN;

B is from (VT U VN)* is a string in the alphabet of the grammar G;
π k is a sequence of functional formulas corresponding to all formal parameters

of each entry of symbols from VT UVN into the strings A and B
(kernel actual parameters);

π n is a sequence of functional formulas corresponding to all formal parameters
of each functional symbol from Fvar (non-kernel actual parameters);

FT is a subset of L of labels of the productions permitted on the next step of
derivation if Q=T (“true”); it is called a permissible set in case of success;

FF is a subset of L of labels of the productions permitted on the next step of
derivation if Q=F (“false”); it is called a permissible set in case of failure.

Table 1
 A structure of typical controlled grammar.

 L Q Kernel, πk πn FT FF

 l i Qi A (, ,) —> a(, ,)b(, ,)

V T = . . . V N = . . . V PR = . . .
E is . . . Parm: . . .

A finite set of strings from VT
* and formulas from πn , in which each formal parameter (for

every entry of a terminal symbol into a string) is attributed with a value from E and each symbol f
from Fvar is matched with a mapping h(f), serves as a derivation result.

Derivation in controlled grammar takes place as follows. A symbol S serves as the start of
derivation, where its formal parameters are provided with initial values from E, and initial
mappings h(f) are specified for all f from Fvar. In the role of the initial permissible set of
productions we take the entire set L. To a current string we apply each of the productions of the
current permissible set, the symbol A for which enters into the string. As a result of applying a
production, a new string and a new permissible set are formed. Later on derivation for each of the
strings obtained from a given one takes place independently.

 If none of the productions from permissible set can be applied, then derivation of the given
string is discontinued. If this string consists only of terminal symbols, then it goes into the set of
derivation results, otherwise it is discarded.

The application of a production takes place as follows. We choose the leftmost entry of the
symbol A in the string. We compute the value of the predicate Q. If Q = F, the FF becomes the
permissible set, and the application of the production is ended. If Q = T, then the symbol A is re-
placed by the string B; we carry out computation of the values of all formulas from πk corre-
sponding to the parameters of the symbols, and the parameters assume new values thus computed.
New mappings h(f) (f from Fvar) are specified by means of formulas from πn the permissible set
is furnished by FT, and application of the production is ended. (In the record of the production the
formulas from πn leaving h(f) unaltered are omitted.)

In constructions with which the controlled grammar is provided, it is easy to observe
analogies with the programming language SNOBOL-4.

Definition 4.2. A language L[G] generated by the controlled grammar G is the union

7

of all the sets which are the derivation results in this grammar.

5. An Example of Controlled Grammar

In order to make transparent the definition of controlled grammars let us consider a simple
example. Next we present a process of generating solutions of the well-known Tower of Hanoi
Problem by the specific controlled grammar.

The problem is as follows. There are three pivots a, b , and c. On the first one there is a set
of n disks, each of different radius. The task is to move all the disks to the pivot c moving only
one disk at a time. In addition, at no time during the process may a disk be placed on top of a
smaller disk. The pivot c can, of course, be used as a temporary resting place for the disks.

Let us designate an elementary step of moving disk number i from the pivot x to the pivot y
as p(i, x, y), a terminal symbol with parameters. Thus a solution of the Tower of Hanoi Problem
might be represented as the following string of symbols with parameters:

p(i1, x1, y1)p(i2, x2, y2)...p(im, xm, ym).
This is the string of the language of all possible sequences of moves. Consider the following
controlled grammar:

Table 2. A controlled grammar generating solutions
to the Tower of Hanoi Problem

 L Q Kernel, πk πn FT FF

 1 Q1 S (n, x, y) –> A(n, x, y) 2 ø

 2 Q2 A(n, x, y) –>A(f1 (n), x, f2 (x, y)) 2 3

p(n, x, y)
A(f1 (n), f2 (x, y), y)

 3 Q3 A(n, x, y) –>p(n, x, y) 2 ø

VT ={p}
VN ={S , A}
VPR

Pred ={Q1 ,Q2 ,Q3 },
Q1 = T
Q2 (n) =T, if n>1; Q2 (n) = F, if n = 1.
Q3 (n) =T, if n=1; Q3 (n) = F, if n > 1.

Var = {n, x, y}
F =Fcon UFvar,
 Fcon={f1 ,f2 }

f1 (n) = n-1, n = 2,3,...
f2 (x, y) yields the value from {a, b , c}\{x, y}, where values of
x, y are from {a, b , c}

Fvar={3, a, c}
E =Z+U{a, b , c}
Parm: S –>Var, A –>Var, p –>Var
L={1, 2, 3}
At the beginning of derivation: x = a, y = c, n = 3.

8

Consider the derivation for the case of three disks: n =3, x=a, y=c, i.e., the values of parameters
for the starting symbol S are S (3, a, b). A symbol m=> means application of the production with
the label m.
 S (3, a, b) 1=> A(3, a, c)2=> A(2, a, b)p(3, a, c)A(2, b , c)

2=> A(1, a, c)p(2, a, b)A(1, c, b)p(3, a, c)A(2, b , c)
3=> p(1, a, c)p(2. a, b)A(1, c, b)p(3, a, c)A(2, b , c)
3=> p(1, a, c)p(2, a, b)p(1, c, b)p(3, a, c)A(2, b , c)

2=>p(1, a, c)p(2, a, b)p(1, c, b)p(3, a, c)A(1, b , a)p(2, b , c)A(1, a,c)
3=> p(1, a, c)p(2, a, b)p(1, c, b)p(3, a, c)p(1, b , a)p(2, b , c)A(1, a, c)

3=> p(1,a, c)p(2,a, b)p(1, c, b)p(3, a, c)p(1, b , a)p(2, b , c)p(1, a, c).

6. A Formal Statement of the Problem

A Complex System is the following eight-tuple:
< X, P, Rp, ON, v , Si, S t, TR>,

where
X={xi} is a finite set of points;
P={pi} is a finite set of elements; P is a union of two non-intersecting subsets P1 and P2;
Rp(x,y) is a set of binary relations of reachability in X (x and y of X, p of P);
ON(p)=x, where ON is a partial function of placement from P into X;
v is a function on P with positive integer values; it describes the values of elements;

The Complex System searches a space of states, hence, it should have initial and target
states;

S i and S t are the descriptions of the initial and target states in the language of the first order
predicate calculus, which matches with each relation a certain Well-Formed Formula
(WFF). Thus, each state from Si or St is described by a certain set of WFF of the form
{ON(pj)=xk};

TR is a set of operators TRANSITION(p, x, y). They describe transitions of the System
from one state to another one. These operators describe the transition in terms of two
lists of WFF (to be removed and added to the description of the state), and of WFF of
applicability of the transition.
Here,

Remove list: ON(p)=x, ON(q)=y;
Add list: ON(p)=y;
Applicability: (ON(p)=x)^Rp(x,y),

where p belongs to P1 and q belongs to P2 or vice versa. The transitions are carried out
in turn with participation of elements p from P1 and P2 respectively; omission of a turn
is permitted.

According to definition of the set P, the elements of the System are divided into two subsets
P1 and P2. They might be considered as units moving along the reachable points. Element p can
move from point x to point y if these points are reachable, i.e., Rp(x, y) holds. The current
location of each element is described by the equation ON(p)=x. Thus, the description of each state
of the System {ON(pj)=xk} is the set of descriptions of the locations of the elements. The operator
TRANSITION(p, x, y) describes the change of the state of the System caused by the move of the
element p from the point x to the point y. The element q from the point y must be withdrawn
(eliminated) if p and q belong to the different subsets P1 and P2.

The problem of the optimal operation of the System is considered as a search for the optimal
variant of transitions leading from one of the initial states of Si to a target state S of St. The target
states are described with the help of the following function of states m(S).

9

The values of m(S) for a target state are much bigger than for any other one (they are
greater than some constant). In our case we stipulate that

(6.1) m(S)=∑v(pi)–∑v(pj),
where pi of P1 and pj of P2 which are not withdrawn in a state S. The same function is
used to evaluate variants of the search.

With such a problem statement for search for the optimal sequence of transitions into the
target state, we could use formal methods like those in the problem-solving system STRIPS [13],
nonlinear planner NOAH [14], or in subsequent planning systems, such as MOLGEN [27] or
TWEAK [28]. However the search would have to be made in a space of a huge dimension (for
nontrivial examples), i.e., in practice no solution would be obtained. We, thus, devote ourselves to
search for an approximate solution of a reformulated problem, considering our Complex System in
some sense as nearly decomposable [2].

It is easy to show that positional games such as chess and checkers, military operations and
robot control problems with two opposing sides might be considered as Complex Systems (see
Sections 13, 14, and [22, 23, 25]). But it is interesting that this specific model of the formal
linguistic approach is applicable to representing and solving a wide class of practical problems
“without obvious opposing side” such as power maintenance scheduling, long-range planning,
operations planning, VLSI layout, and various operations research problems. The idea is that the
optimal variant of operation of these real-world systems might be artificially reduced to a two-sides
game where one side strives to achieve a goal and the other is responsible for the provision of
resources (see Section 15, and [17, 24, 25]).

7. A Measurement of Distances

To create and study network languages we have to present briefly some geometrical properties
of one-dimensional structures of the Complex System.

Definition 7.1. A map of the set X relative to point x and element p for the Complex System
is the mapping:

MAPx , p : X –> Z+ ,
(x is from X, p is from P) which is constructed as follows. We consider a set of the areas of
reachability from the point x, i.e., the following nonempty subsets of X {Mk

x,p}:
k =1 : Mk

x,p is a set of points m reachable in one step from x: Rp(x,m)=T;
k >1 : Mk

x,p is a set of points reachable in k steps and not reachable in k-1 steps, i.e., points
m reachable from points of Mk -1

x,p and not included in any Mi
x,p with numbers i less

then k.
Let

MAPx,p(y)=k, for y from Mk
x,p (number of steps from x to y).

In the remaining points let
MAPx,p(y)=2n, if y≠x , and
MAPx,p(y)=0, if y=x.
It is easy to verify that the map of the set X for the specified element p from P defines a

distance function on X.
1. MAPx,p(y) > 0 for x≠y; MAPx,p(x)=0;
2. MAPx,p(y)+MAPy,p(z) ≥ MAPx,p(z).

 If Rp is a symmetric relation,
3. MAPx,p(y)=MAPy,p(x),

In this case each of the elements p from P specifies on X its own metric.

8. Languages of Trajectories

10

Here, we define a lower-level language of the hierarchy of languages. It will serve as a
building block to create the upper-level languages, in particular, the network languages. This
language actually formalizes a notion of the path between two points for the certain element of the
System. An element might follow this path to achieve the goal connected with the ending point of
this path.

Definition 8.1. A trajectory for an element p of P with the beginning at x of X and the end at
the y of X (x ≠ y) with a length l is a following string of symbols with parameters, points of X:

to=a(x)a(x1)…a(xl),
where each successive point xi+1 is reachable from the previous point xi: Rp(xi, xi+1) holds for i =
0, 1,…, l–1; element p stands at the point x: ON(p)=x. We denote tp(x, y, l) the set of trajectories
in which p, x, y, and l are the same. P(to)={x, x1, ..., xl} is the set of parameter values of the
trajectory to.

Two trajectories of the element p a(1)a(2)a(3)a(4)a(5) and a(1)a(6)a(7)a(8)a(9)a(5) are
shown in the Fig. 1.

Definition 8.2. A shortest trajectory t of tp(x, y, l) is the trajectory of minimum length for
the given beginning x, end y and element p.

For example, in Fig. 1, a trajectory a(1)a(2)a(3)a(4)a(5) is the shortest trajectory. Reasoning
informally, an analogy can be set up: the shortest trajectory is an analogous to a straight line
segment connecting two points in a plane. Let us consider an analogy to a k-element segmented
line connecting these points.

Definition 8.3. An admissible trajectory of degree k is the trajectory which can be
divided into k shortest trajectories; more precisely there exists a subset {xi1, xi2, …, xik-1} of P(to),
i1 < i2 <…< ik-1, k ≤l, such that corresponding substrings

a(xo)…a(xi1), a(xi1)…a(xi2), …, a(xik-1)…a(xl)
are the shortest trajectories.

1
2

5

p 3
4

6

7

8

9

Fig. 1. An interpretation of shortest and admissible trajectories.

The shortest and admissible trajectories of degree 2 play a special role in many problems. An
example of such a trajectory a(1)a(6)a(7)a(8)a(9)a(5) is shown in the Fig. 1. As a rule, elements
of the System should move along the shortest paths. In case of an obstacle, the element should
move around this obstacle by tracing some intermediate point aside (e.g. point 7 in Fig.1) and
going to and from this point to the end along the shortest trajectories. Thus, in this case, an element
should move along an admissible trajectory of degree 2.

Definition 8.4. A Language of Trajectories Lt
H(S) for the Complex System in state S is

the set of all the shortest and admissible (degree 2) trajectories of the length less than H. This

11

language also includes the empty trajectory e of the length 0.

Properties of the Complex System permit to define (in general form) and study formal
grammars for generating the Language of Trajectories as a whole along with its subsets: shortest
and admissible (degree 2) trajectories. The following theorem holds [25]:

Theorem 8.1. If the distance between points xo and yo from X is less or equal lo for the element
p on xo, i.e., if ON(p) = xo and MAPxo,p(yo) ≤ lo, where lo < 2n, n is the number of points in X,
and relation Rp is symmetric, i.e., for all x from X, y from X and p from P Rp(x, y) = Rp(y, x),
then there exists a certain controlled grammar, called Gt

(2) , which can generate all the shortest and
admissible (of degree 2) trajectories tp(xo, yo, lo) from xo to yo of the length less or equal lo .

9. Languages of Trajectory Networks

After defining the Language of Trajectories, we have the tools for the breakdown of our
System into subsystems. According to the ideas presented in [16], these subsystems should be
various types of trajectory networks, i.e., some sets of interconnected trajectories with one singled
out trajectory called the main trajectory. An example of such a network is shown in Fig. 2.

1

2

3

4

57

6

9
8

10

11

13

12

q

q

q

q

p

p
p

0

1

2

2

4
3

1

Fig. 2. A network language interpretation.

The basic idea behind these networks is as follows. Element po should move along the main
trajectory a(1)a(2)a(3)a(4)a(5) to reach the ending point 5 and remove the target q4 (an opposite
element). Naturally, the opposite elements should try to disturb those motions by controlling the
intermediate points of the main trajectory. They should come closer to these points (to the point 4
in Fig. 2) and remove element po after its arrival (at point 4). For this purpose, elements q3 or q2
should move along the trajectories a(6)a(7)a(4) and a(8)a(9)a(4), respectively, and wait (if
necessary) on the next to last point (7 or 9) for the arrival of element po at point 4. Similarly,
element p1 of the same side as po might try to disturb the motion of q2 by controlling point 9 along
the trajectory a(13)a(9). It makes sense for the opposite side to include the trajectory

12

a(11)a(12)a(9) of element q1 to prevent this control.
Similar networks are used for the breakdown of complex systems in different areas. Let us

consider a formal linguistic formalization of such networks. The Language of Trajectories
describes "one-dimensional" objects by joining symbols into a string employing reachability
relation Rp(x, y). To describe networks, i.e., “two-dimensional" objects made up of trajectories,
we use the relation of trajectory connection.

Definition 9.1. A trajectory connection of the trajectories t1 and t2 is the relation C(t1,t2). It
holds, if the ending link of the trajectory t1 coincides with an intermediate link of the trajectory t2;
more precisely t1 is connected with t2, if among the parameter values P(t2)={y,y1,…,yl} of
trajectory t2 there is a value yi = xk, where t1=a(xo)a(x1)…a(xk). If t1 belongs to some set of
trajectories with the common end-point, than the entire set is said to be connected with the
trajectory t2.

For example, in Fig. 2 the trajectories a(6)a(7)a(4) and a(8)a(9)a(4) are connected with the
main trajectory a(1)a(2)a(3)a(4)a(5) via point 4. Trajectories a(13)a(9) and a(11)a(12)a(9) are
connected with a(8)a(9)a(4).

Definition 9.2. A set of trajectories CAB(t) from B, with which trajectory t is connected is
called the bundle of trajectories for trajectory t relative to the set B of trajectories.

To formalize the trajectory networks we should define some routine operations on the set of
trajectories: a k-th degree of connection and a transitive closure.

Definition 9.3. A k-th degree of the relation C on the set of trajectories A (denoted by
CA

k) is defined as usual by induction.
For k = 1 CA

k(t1,t2) coincides with C(t1,t2) for t1,t2 from A.
For k > 1 CA

k(t1,t2) holds if and only if there exists a trajectory t3 from A, such that C(t1,t3)
and CA

k-1(t3,t2) both hold.

Trajectory a(11)a(12)a(9) in Fig.2 is connected (degree 2) with trajectory
a(1)a(2)a(3)a(4)a(5), i.e., C2(a(11)a(12)a(9), a(1)a(2)a(3)a(4)a(5)) holds.

Definition 9.4. A transitive closure of the relation C on the set of trajectories A (denoted
by CA

+) is a relation, such that CA
+(t1,t2) holds for t1 and t2 from A, if and only if there exists i >

0 that CA
i(t1,t2) holds.

The trajectory a(10)a(12) in Fig.2 is in transitive closure to the trajectory
a(1)a(2)a(3)a(4)a(5) because C3(a(10)a(12), a(1)a(2)a(3)a(4)a(5)) holds by means of the chain
of trajectories a(11)a(12)a(9) and a(8)a(9)a(4).

Definition 9.5. A trajectory network W relative to trajectory to is a finite set of trajectories
to,t1,…,tk from the language Lt

H(S) that possesses the following property: for every trajectory ti
from W (i = 1, 2,…,k) the relation CW

+(ti,to) holds, i.e., each trajectory of the network W is
connected with the trajectory to that was singled out by a subset of interconnected trajectories of
this network.

Obviously, the trajectories in Fig. 2 form a trajectory network relative to the main trajectory
a(1)a(2)a(3)a(4)a(5). We are now ready to define network languages.

Definition 9.6. A family of trajectory network languages LC(S) in a state S of the

13

Complex System is the family of languages that contains strings of the form
t(t1, param)t(tp, param)…t(tm, param),

where param in parentheses substitute for the other parameters of a particular language. All the
symbols of the string t1, t2,…, tm correspond to trajectories which form a trajectory network W
relative to t1.

Different members of this family correspond to different types of trajectory network
languages which describe particular subsystems for solving search problems. One of such
languages is a language which describes specific networks called Zones. They play a main role in
the model considered here [16]. The formal definition of this language is essentially constructive
and requires showing explicitly a method for generating this language, i.e., a certain formal
grammar. This grammar will be discussed later. In order to make our points transparent, first of
all, we define the Language of Zones informally.

A Language of Zones is a trajectory network language with strings of the form
 Z=t(po,to,τo) t(p1,t1,τ1)…t(pk,tk,τk),

where to,t1,…,tk are the trajectories of elements po,p2,…,pk respectively; τo,τ1,…,τk are positive
integer numbers (or 0) which “denote the time allocated for the motion along the trajectories in a
correspondence to the mutual goal of this Zone: to remove the target element – for one side, and to
protect it – for the opposite side. Trajectory t(po,to,τo) is called the main trajectory of the Zone. The
element q standing on the ending point of the main trajectory is called the target. The elements po
and q belong to the opposite sides.

To make it clearer let us show the Zone corresponding to the trajectory network in Fig. 2.
Z =t(po, a(1)a(2)a(3)a(4)a(5), 4)t(q3, a(6)a(7)a(4), 3)t(q2, a(8)a(9)a(4), 3)t(p1, a(13)a(9), 1)

t(q1, a(11)a(12)a(9), 2) t(p2, a(10)a(12), 1)
Assume that the goal of the white side is to remove target q4, while the goal of the black side is to
protect it. According to these goals element po starts the motion to the target, while blacks start in
its turn to move their elements q2 or q3 to intercept element po. Actually, only those black
trajectories are to be included into the Zone where the motion of the element makes sense, i. e., the
length of the trajectory is less than the amount of time (third parameter f) allocated to it. For
example, the motion along the trajectories a(6)a(7)a(4) and a(8)a(9)a(4) makes sense, because
they are of length 2 and time allocated equals 3: each of the elements has 3 time intervals to reach
point 4 to intercept element po assuming one would go along the main trajectory without move
omission. According to definition of Zone the trajectories of white elements (except po) could only
be of the length 1, e.g., a(13)a(9) or a(10)a(12). As far as element p1 can intercept motion of the
element q2 at the point 9, blacks include into the Zone the trajectory a(11)a(12)a(9) of the element
q1 which has enough time for motion to prevent this interception. The total amount of time
allocated to the whole bunch of black trajectories connected (directly or indirectly) with the given
point of main trajectory is determined by the number of that point. For example, for the point 4 it
equals 3 time intervals.

10. A Grammar of Zones

Here we consider a formal definition of the Language of Zones employing class of controlled
grammars.

Definition 10.1. A language LZ(S) generated by the grammar GZ (Tables 3, 4) in a state S of a
Complex System is called the Language of Zones.

14

Table 3
A Grammar of Zones GZ

L Q Kernel, πk πn FT FF
__ for all z from X
 1 Q1 S (u, v, w) –> A(u, v, w) two ø

 2i Q2 A(u, v, w) –>t(hi

o(u), lo+1) TIME(z)=DIST(z,hi
o(u)) 3 ø

A((0, 0, 0),
 g(hi

o(u),w),zero)

 3 Q3 A(u, v, w) –> A(f (u, v), v, w) NEXTTIME(z)= four 5

init(u, NEXTTIME(z))

 4j Q4 A(u, v, w) –> t(hj (u), TIME(y))) NEXTTIME(z)= 3 3

 A(u, v, g(hj (u), w)) ALPHA(z, hj (u),
TIME(y)–l+1)

 5 Q5 A(u, v, w) –> A((0, 0, 0), w, zero) TIME(z)=NEXTTIME(z) 3 6

 6 Q6 A(u, v, w) –> e ø ø

VT ={t},

VN ={S , A},

VPR
Pred ={Q1 ,Q2 ,Q3 ,Q4 ,Q5 ,Q6}

Q1(u) = (ON(po)=x) ^ (MAPx,po(y) ≤ l ≤ lo) ^ (∃q((ON(q)=y) ^ (χ(po, q)=0)))
Q2(u) = T
Q3(u) = (x≠n) ^ (y≠n)

Q4(u) = (∃p1((ON(p1)=x) ^ (l > 0) ^ (((χ(po, p1)=1) ^ (MAPx,p1(y)=1)) ∨
((χ(po, p1)=0) ^ (MAPx,p1(y) ≤ l))))

Q5(w) = (w≠zero)
Q6=T

Var = {x, y, l, , v1, v2, ..., vn, w1, w2, ..., wn}; for the sake of brevity:
 u=(x, y, l), v=(v1, v2, ..., vn),w=(w1, w2, ..., wn), zero=(0, 0, ..., 0)

Con = {xo,yo,lo,po};

Func=Fcon UFvar;

Fcon={fx , fy , f l , g1 , g2 , . . . , gn, h1 , h2 , . . . , hM, h1
o , h2

o , . . . , hM
o ,

DIST, init, ALPHA}, f = (fx , fy , f l), g = (gx1, gx2, . . . , gxn),

M=|Lt
lo(S)| is the number of trajectories Lt

lo(S).

Fvar={xo,yo,lo,po, TIME, NEXTTIME}
E =Z+U X U P U Lt

lo(S) is the subject domain;

Parm: S –>Var, A –>{u, v, w}, t –>{p, , };

L= {1, 3, 5, 6} U two U four, two={21,22,...,2M}, four={41,42,...,4M}

15

Table 4
A definition of functions of the Grammar of Zones GZ

D(init) = X x X x Z+ x Z+

init (u,r) =
2n, if u = (0,0,0),

r, if u ≠ (0,0,0).




D(f) = (X x X x Z+ U{0, 0, 0}) x Z+n

f (u, v) =

(x + 1,y,l), if (x ≠ n) ∧ (l > 0),

(1, y +1, TIME(y +1)* vy+1), if (x = n) ∨ ((l ≤ 0) ∧ (y ≠ n)),

(0,0,0), if (x = n) ∧ (y = n).






 

D(DIST) = X x P x Lt

l o(S). Let to ∈ Lt
l o(S), to =a(zo)a(z1)...a(zm), to ∈ tpo(zo, zm, m);

If
for some k (1 ≤ k ≤ m) x = zk,
then DIST(x, po, to) = k+1
else DIST(x, po, to) = 2n

D(ALPHA) = X x P x Lt

l o(S) x Z+

ALPHA(x, po, to, k) =
min(NEXTTIME(x), k), if DIST(x, po ,t o) < 2n ,

NEXTTIME(x) , if DIST(x,p o, to) = 2n .




D(gr) = P x Lt

lo(S) x Z+n, r ∈ X.

gr(po ,t o, w) =
1, if DIST(r,p o,t o) < 2n ,

w r , if DIST(r, po ,t o) = 2n .




D (hi
o) = X x X x Z+ ; Denote TRACKSpo = {po} x (∪ L[Gt

(2)(x, y, k, po)]
If 1≤k≤l

TRACKSpo = e

then hi
o(u) = e

else TRACKSpo
= {(po,t 1),(po ,t 2),..., (po, tb)},(b ≤ M) and hi

o (u) =
(po,t i), if i ≤ b,

(po,t b), if i > b.




D(hi) = X x X x Z+ ; Denote TRACKS = ∪ TRACKSp, where TRACKSp is the same as for hi
o

If ON(p)=x
TRACKS = e
then hi(u) = e

else TRACKS = {(p1,t 1),(p1,t 2) ,...,(pm ,t m)}, (m ≤ M) and hi (u) =
(pi ,t i), if i ≤ m,

(pm ,t m) , if i > m.




At the beginning of derivation: u=(xo, yo, lo), w = zero, v = zero, xo ∈ X, yo ∈ X, lo ∈ Z+ ,

po ∈ P, and TIME(z)=2n, NEXTTIME(z)=2n for all z from X.

16

11. A Geometry of Zones

To study this language formally we need some preliminary definitions.
Definition 11.1. An alphabet A(Z) of the string Z of the parameter language L is the set
symbols of this language with given parameter values, where each of this symbols with parameters
is included at least once in a string Z, and e (the empty symbol).

Definition 11.2. A trajectory alphabet TA(Z) of the zone Z is the set of trajectories from
Lt

H(S) that correspond to the actual parameter values of the alphabet A(Z).

Theorem 11.1. For any string Z from LZ(S) trajectories from TA(Z) form a trajectory

network, i.e., LZ(S) ∈ LC(S).

Proof. Let us consider a string Z=t(po, to, τo)...t(pk, tk, τk). Obviously under the condition

that the predicate Q1 is true, the symbol t(po, to, τo) is attached to the string by applying the
productions 1 and 2i. The following proof is by induction. We assume that all the trajectories

TA(Zm) of the substring Zm= t(po, to, τo)...t(pm, tm, τm) (m < k) form a trajectory network.

The symbol t(pm+1, tm+1, τm+1) can be attached to a string only after applying the produc-

tion with the label 4j. Among the parameters of the trajectory tm+1 ∈ tp(x, y, l) we are interested in
the value of y, the parameter value of the last symbol of the trajectory. One can pass to the
production with the label 4j only after a successful application of a production with the label 3, i.e.,
in FS case. Here the f(u, v) function changes the value of the parameter u=(x, y, l). It is clear that
with the last change of y caused by the substitution of f(xo, yo, lo, v) for u=(x, y, l), some yo was
replaced by y = yo+1 with l = TIME(y)*vy ≠ 0. Otherwise the given change of y, and hence of l,
would not have been the last (before the application of the production with the label 4j), as all
attempts of applying the production 4j for l = 0 would have been unsuccessful (Q4 =F for l = 0).

Thus, TIME(y) ≠ 0 and vy ≠ 0. The last change in the course of derivation of the value of vy
could occur only in a successful application of a production with the label 5. Here, after applying
the production, vy was given the value of wy. Consequently, wy ≠ 0.

Finally, such a change of the value of wy for which it would become different from zero,
could take place only in a successful application, earlier in the derivation, of one of the productions
with the label 4j. This means that at some stage of derivation the symbol t(pj, tj, τj) was included
in the string Z. At the same time, the parameter wo=(w1

o, . . . ,wn
o) was changed under the action of

the function g(hj (u), wo) in such a way that wy = gy(hj (u), wo). But wy ≠ 0; consequently, wy =
1, i.e., DIST(y, pj, tj) < 2n, and hence y is included among the parameter values of the tj
trajectory. In addition, obviously this trajectory is included among the trajectories to, t1, ..., tm,

since the symbol t(pj, tj, τj) was included in Z earlier in the course of derivation.
In accordance with Definition 9.1, trajectory tm+1 is connected with trajectory ti, i.e.,

C(tm+1, ti) = T holds, with i ≤ m. But by the induction assumption C+
TA(Z)(ti, to) = T and , taking

into account Definitions 9.3–9.5, we conclude that C+
TA(Z)(tm+1, to) = T (because of the

transitivity of C+). Thus all the trajectories to, t1, ..., tm+1 form a trajectory network.
The theorem is proved.

12. Translations of Languages

The Language of Zones allows us to describe the "statics", i.e., the states of the System.
We proceed with the description of the "dynamics" of the System, i.e., the transitions from one
state to another. The transitions describe the change of the descriptions of states as the change of

17

sets of WFF. After each transition a new hierarchy of languages should be generated. Of course, it
is an inefficient procedure. To improve an efficiency of applications in a process of the search it is
important to describe the change of the hierarchy of languages. A study of this change should help
us in modifying the hierarchy instead of regenerating it in each state. The change may be described
as a hierarchy of mappings – translations of languages. Each hierarchy's language should be
transformed by the specific mapping called a translation.

Definition 12.1. A translation relation Tr from a language L1 to a language L2 is the binary
relation Tr from L1 into L2 for which L1 is the domain and L2 is the range. If Tr(a, b) holds, than
the string b is called the output for the input string a.

In general, for the translation relation for each input string there may be several output
strings. However, in our case we can consider the translation relation as a mapping, i.e., "for each
input – no more than one output".

Definition 12.2. Let the Complex System move from the state S1 to the state S2 by applying the
operator To= TRANSITION(p, xo,yo). A Translation of Languages of Trajectories is a
mapping

∏To: Lt
H(S1) ––> Lt

H(S2),

of such a sort that the trajectories of the form a(x)a(y)…a(z) are transformed as follows:
– are "shortened" by the exclusion of the first symbol a(x), if the transition To carries out

along such a trajectory: x = xo & y = yo. (If y = z, i.e., y is the ending point, the
trajectory is transformed into the empty trajectory e.)

x
y

z

p

Fig. 3. A "shortening" trajectory.
– are transformed into the empty trajectory e, if

element p moves away from such a trajectory: x = xo & y ≠ x1,

x
y

z

p

x
1

Fig. 4. A trajectory with the element that moves away.
or this element is withdrawn: x = x1 and WFF ON(q) = x1 comes
into the Remove list of the transition To (see Section 3.)

x
y

z

p

x
0

q
Fig. 5. A trajectory whose element is withdrawn.

– are transformed into itself in all the other cases.
Obviously, mapping ∏Mo is not a mapping "onto" and has a non-empty kernel, i.e., a

18

nonempty co-image of the empty trajectory e. For example, in Fig. 2 after transition
TRANSITION(p2, 10, 12) the trajectory a(10)a(12) is translated into the trajectory e and all the
remaining trajectories are translated into itself.

To proceed with the description of the hierarchy change we should define a translation of its
next level, the Trajectory Network Languages. Let us consider the definition translation for the
Language of Zones.

Definition 12.3. A Translation of Languages of Zones is a mapping of the following
form:

πTo: LZ(S1) –> LZ(S2),
where Zone Z1 is translated into Zone Z2, i.e., πTo(Z1) = Z2 if and only if the main trajectory to1

of Zone Z1 is translated into the main trajectory to2 of the Zone Z2 by the corresponding trajectory
translation, ∏To(to1) = to2.

After transition TRANSITION(po, 1, 2) the Zone depicted in Fig.2 is translated into a new
Zone with the main trajectory a(2)a(3)a(4)a(5), because this transition causes such a translation of
trajectories that trajectory a(1)a(2)a(3)a(4)a(5) is translated into the trajectory a(2)a(3)a(4)a(5).

State S1

2

3

4

57

6

9

10

11

13

12

q

q

q

q

p
p

14
 16

 15

18

q

 p

17

5

2

1
3

4

0
2

 1

 1

8

State S2

2

3

4

57

6

9

10

11

13

12

q

q

q

q

p
p

14
 16

 15

18

q

 p

17

5

2

1

3

4

0

2

 1

 1

 8

2

Fig.6. A translation of Languages of Zones.

19

Let us take a look at the different example (Fig. 6). The Language of Zones in State 1
consists of two Zones with the same main trajectory a(1)a(2)a(3)a(4)a(5). The difference between
these Zones is in the trajectories of element q1. Trajectory a(10)a(11)a(12)a(9) is included into
Zone 1 while a(10)a(13)a(14)a(9) together with a(17)a(14) are included into Zone 2. After the
TRANSITION(q1, 10, 11) the Language of Zones in State S1 is translated into the new Language
of Zones in State S2. Trajectory a(10)a(11)a(12)a(9) is shortened; it is translated into
a(11)a(12)a(9). This is the only difference between the Zone 1 and its translation. The change for
Zone 2 is more essential. It “looses” trajectories a(10)a(13)a(14)a(9) and a(17)a(14) at all. (The
trajectories and its links that are not included in the Language of Zones in a State S2 are shown by
dotted lines in Fig. 6.)

It is very important to show the difference between the Zone and its translation in general
case, i.e., to describe which trajectories of the old Zone remain unchanged in the new one, which
trajectories are shortened, as a(1)a(2)a(3)a(4)a(5) in Fig.2 or a(10)a(11)a(12)a(9) in Fig. 6,
which are not included, i.e., are translated into the empty trajectory e, and finally, what are the new
trajectories of the new Zone. This knowledge for every transition would give us a description of
the change of the Language of Zones.

A description of the change for the Language of Trajectories is trivial and explicitly follows
from the definition of translations of these languages. For the Translation of Languages of Zones it
is a problem. It is currently under development. The study of properties of translations allows us to
give a formal, constructive solution of the well-known frame problem [13, 15] for this specific
system. This is the problem of effective description of boundaries between the actual and outdated
information about the system. This information is updated in the process of search for an optimal
operation.

13. Zones for the Robot Control Model

A robot control model can be represented as a Complex System naturally (see Section 6). A
set X represents the operational district which could be the area of combat operation broken into
squares, e.g., in the form of the table 8 x 8, n=64. It could be a space operation, where X
represents the set of different orbits, etc. P is the set of robots or autonomous vehicles. It is
broken into two subsets P1 and P2 with opposing interests; Rp(x, y) represent moving
capabilities of different robots: robot p can move from point x to point y if Rp(x, y) holds. Some of
the robots can crawl, the other can jump or ride, or even sail and fly. Some of them move fast and
can reach point y (from x) in “one step”, i.e., Rp(x, y) holds, and others can do that in k steps
only, and many of them can not reach this point at all. ON(p)=x, if robot p is at the point x; v(p)
is the value of robot p. This value might be determined by the technical parameters of the robot. It
might include the immediate value of this robot for the given combat operation; Si is an arbitrary
initial state of operation for analysis, or the starting state; S t is the set of target states. These might
be the states where robots of each side reached specified points. On the other hand St can specify
states where opposing robots of the highest value are destroyed. The set of WFF {ON(pj) = xk}
corresponds to the list of robots with their coordinates in each state. TRANSITION(p, x, y)
represents the move of the robot p from square x to square y; if a robot of the opposing side stands
on y, a removal occurs, i.e., robot on y is destroyed and removed.

Two robots with different moving capabilities are shown in Fig. 7. One of them, robot
FIGHTER standing on f6, can move to any next square. The other robot BOMBER from h5 can
move only straight ahead, e.g., from h5 to h4, from h4 to h3, etc. Thus robot FIGHTER on f6 can
reach all the following points y ∈{e5, e6, e7, f7, g7, g6, g5, f4} in on step, i.e., RFIGHTER(f6, y)
holds, while robot BOMBER standing on h5 can reach only h4. Obviously, moving capabilities of
these robots are similar to well-known chess pieces King and Pawn, respectively. Assume that
robots FIGHTER and BOMBER belong to opposite sides: FIGHTER ∈ P1 while BOMBER ∈
P2. Also assume that there is one more robot TARGET (or unmoving device) standing on h1.

20

TARGET belongs to P1 which means that characteristic function χ(BOMBER, TARGET)=0.

(Function χ(p, q) is defined on P x P and equals 1 if p and q both belong to P1 or P2; χ(p, q) = 0
in the remaining cases.) Thus robot BOMBER should reach point h1 to destroy the Target while
FIGHTER will try to intercept this motion. Make sure that X corresponds to the area 8 x 8
excluding points g3, g4 which are restricted.

1

2

3

4

5

6

7

8

 a b c d e f g h

Figure 7. Interpretation of the Language of Zones for the robot control model.

Let us generate the Language of Zones. Here we identify points of X with their ordinal
numbers, thus a1 corresponds to 1, a2 to 2, etc., h8 corresponds to 62 (g3, g4 are excluded). We
shall use both notations, algebraic and numerical, where it is convenient.

Let us apply grammar GZ (Table 3, 4) for different values of u. Production 1 is applicable
for u = (h5, h1, 5) = (40, 8, 5), l = lo = 4 because

Q1 (u) =(ON(BOMBER)=h5) ^ (MAPh5,BOMBER(h1) ≤ 4 ≤ 4) ^ ((ON(Target)=h1) ^

(χ(BOMBER, TARGET)=0)) = T.
Thus,

S (u, zero, zero) 1=> A(u, zero, zero)
and FT = two is a permissible set. Therefor next we have to apply one of the productions 2i ∈ two.
Q2 (u) is always true so

A(u, zero, zero) 2i=> t(hi
o(u), 5) A((0, 0, 0), g(hi

o(u),zero),zero)
In order to compute hi

o(u) we have to generate all the shortest and admissible (of degree 2)
trajectories from h5 to h1 for the robot BOMBER (Table 4). The length of these trajectories should
be less or equal l = 4.

TRACKSBOMBER = {BOMBER} x (∪ L[Gt
(2)(h5, h1, k, BOMBER)].

1≤k≤4

According to grammar Gt
(2) [25] only one such trajectory t1 exists, and it is generated by this

grammar :
tB = a(h5)a(h4)a(h3)a(h2)a(h1).

Thus TRACKS ={(BOMBER, tB)}, the number of trajectories b = 1 and h1
o(u) = (BOMBER,

tB). In that way we generated the main trajectory of the Zone:
t(BOMBER, tB, 5).

21

Next we have to compute g(h1
o(u),zero) = g (BOMBER, tB, zero). According to Table 4,

for all r ∈ X the r-th component of function g is as follows:

gr(BOMBER,tB , zero) =
1, if DIST(r,BOMBER,tB) < 2n,

0, if DIST(r,BOMBER,tB) = 2n,




The value of the function DIST (x, BOMBER, tB) = k+1, where k is the number of symbol of
the trajectory t1, whose parameter value equals x. Consequently

 DIST (h4, BOMBER, tB) = 2
DIST (h3, BOMBER, tB) = 3
DIST (h2, BOMBER, tB) = 4
DIST (h1, BOMBER, tB) = 5

For the rest of x from X DIST (x, BOMBER, t1) = 2 x 62 =124. Thus for r ∈ {h1, h2, h3, h4} =
{8, 16, 23, 30} gr(BOMBER, tB, zero) = 1, for the rest of r gr= 0.

Now we can complete application of production 21:
A(u, zero, zero) => t(BOMBER, tB, 5)A((0, 0, 0), g (BOMBER,tB,zero), zero).

Non-kernel functional formula from π n remains for computation:
TIME(z) = DIST(z, BOMBER, tB).

Symbol “=“ in these formulas should be considered as an assignment, i.e., the current value of the
right side expression should be assigned to the left side. The computation of DIST(z, BOMBER,
tB) for all z from X has been performed above, so TIME(z) equals 124 for all z ∈ X except {h1,
h2, h3, h4}, where TIME(z) equals 5, 4, 3, 2, respectively own.

1

1

1

1

2

3
4

5
Fig. 8. A representation of values of v and TIME(z) after generating trajectory

a(h5)a(h4)a(h3)a(h2)a(h1).

Values of function g and, consequently, values of the components of vector v (Fig. 8),
different from zero, mark ending points of prospective trajectories of robots from P1 which could
intercept motion of BOMBER along the main trajectory: points h1, h2, h3, h4. Values of TIME
(Fig. 8) for the same points designate maximum lengths of those prospective trajectories. These
trajectories are called the1-st negation trajectories. Points h1, h2, h3, h4 are considered as targets
by the other side, P2, as well. It means that the grammar should generate trajectories of robots (if
they exist) which could support motion of BOMBER by preventing its interception, the so-called
own trajectories. By definition of the Grammar of Zones (Table 3, predicate Q4) the length of such
trajectories is restricted by 1. Obviously, there are no own trajectories in the problem shown in
Fig. 7.

Let us continue derivation of Zone. Production 21 was applied successfully, so we have to
go to the production with label 3 and try to apply it to the left-most entry of nonterminal A . This
production is applicable because Q3 ((0, 0, 0)) = (0 ≠ 64) ^ (0 ≠ 64). Thus,

t(BOMBER, t1, 5)A((0, 0, 0), v, zero) 3=>t(BOMBER, t1, 5) A(f ((0, 0, 0), v), v, zero).
Next we have to compute value of the function f . According to Table 4 for u = (x, y, l) = (0, 0, 0)
and vy+1 = v1 = 0:

22

f(u, v) = (1, y+1, TIME(y+1) * vy+1) = (1, 1, 0).
Therefor,

3=>t(BOMBER, tB, 5) A((1, 1, 0), v, zero)
It remains to compute values of the functional formula from π n.

NEXTTIME(z) = init((0, 0, 0), NEXTTIME(z)) = 2n = 128 for all z from X.
Application of the production 3 was successful so next we have to apply one of the productions 4j
to the left-most entry of the nonterminal A(u, v, w). Here u = (x, y, l) =(1, 1, 0), i.e., l = 0 and
consequently Q4 = F. Thus, productions 4j cannot be applied, so FF is a permissible set here and
we have to go back to the production 3.

We try to apply production to the nonterminal A(u, v, w) with u = (x, y, l) =(1, 1, 0), v
shown in Fig. 5, and w = zero. Obviously, Q3(1, 1, 0) = T and this production is applicable:
3=>t(BOMBER, tB, 5) A(f ((1, 1, 0), v), v, zero).
As far as (l =0) ^ (y =1) and vy+1 = v2 = 0,

f(u, v) = (1, y+1, TIME(y+1) * vy+1) = (1, 2, 0).
Therefor,

3=>t(BOMBER, tB, 5) A((1, 2, 0), v, zero)
A computation of function NEXTTIME takes place as follows:

NEXTTIME(z) = init((1, 1, 0), NEXTTIME(z)).
To prevent misunderstanding we have to remind that symbol “=“ here means that value of the right
side should be assigned to the left side, i.e., the new values of NEXTTIME are computed basing
on the current values. Thus,

 NEXTTIME(z) = 124 for all z from X.
Application of the production 3 was successful so next again we will try to apply one of the
productions 4j. But Q4(1, 2, 0) = F and again we have to go back to production 3. Q3(1, 2, 0) =
T, this production is applicable, and this loop continues until u changes either way:

l = TIME(y+1) * vy+1 ≠ 0 or y = 124.
In our case v7+1 = 1 (≠ 0). Thus 8-th application of production 3 will result in the following string:

3=>t(BOMBER, tB, 5) A((1, 8, 5), v, zero)
because for u = (1, 7, 0) y+1 corresponds to h1, TIME(y+1) * vy+1 = TIME(h8) * 1 = 5.

This means that point h1 is determined as the ending point for generating trajectories of robots
which intercept motion of the BOMBER. The following derivation steps would allow us to find
possible starting points of such trajectories.

The next attempt of applying production 4j will result in failure because there no robots at point
x = 1, i.e., at point a1, and Q4(1, 8, 5) = F. Again we return to production 3 but with l > 0 and x
≠ 62. This means the beginning of a new loop which consists of multiple applications of
production 3 after failures of attempts to apply one of productions 4j .

3=>t(BOMBER, tB, 5) A((2, 8, 5), v, zero)
3=>t(BOMBER, tB, 5) A((3, 8, 5), v, zero)

.
3=>t(BOMBER, tB, 5) A((44, 8, 5), v, zero)

With u = (44, 8, 5) this loop will be terminated because
 Q4(44, 8, 5) = (ON(FIGHTER) = 44) ^ (5 > 0) ^ (χ(BOMBER, FIGHTER) = 0) ^

(MAPf6,FIGHTER(h1) = 5) = T
which means that productions 4j are applicable. These productions will generate intercepting
trajectories from f6 to h1.

4j=>t(BOMBER, tB, 5)t(hj (44, 8, 5), TIME(8))A((44, 8, 5), v, g(hj (44, 8, 5), zero))
In order to compute hj (44, 8, 5) we have to generate all the shortest and admissible (of degree 2)
trajectories from point f6 to h1 for robot FIGHTER (Table 4). The length of these trajectories
should be less or equal l = 5.

TRACKSFIGHTER = {FIGHTER} x (∪ L[Gt
(2)(f6, h1, k, FIGHTER)].

1≤k≤5
TRACKS = {(FIGHTER, t1), (FIGHTER, t2), (FIGHTER, t3)}, m = 3 and

23

h1(44, 8, 5) = (FIGHTER, t1)
h2(44, 8, 5) = (FIGHTER, t2)
h2(44, 8, 5) = (FIGHTER, t3)

According to [25] there are three such trajectories (Fig. 7), and they are generated by the grammar
Gt

(2). (Of course, there is one more trajectory, a(f6)a(g5)a(h4)a(h3)a(h2)a(h1), which partially
coincides with the main trajectory of the Zone and thus should be rejected.) Beginning with this
step the derivation can be continued with three strings depending on the production applied on this
step: 41, 42 or 43. It means we can derive three Zones with the same main trajectory and different
intercepting trajectories from f6 to h1. Let us apply production 41 and continue derivation of Zone
with the following trajectory

tF = t1 =a(f6)a(e5)a(e4)a(f3)a(g2)a(h1).
Thus, taking into account that TIME(8) = 5, we have

41=>t(BOMBER, tB, 5)t((FIGHTER, tF), 5)A((44, 8, 5), v, g(FIGHTER, tF, zero)).
Next we have to compute g(FIGHTER, tF,zero). According to Table 4, for all r ∈ X the r-th

component of function g is as follows:

gr(FIGHTER,tF , zero) =
1, if DIST(r, FIGHTER, tF) < 2n,

0, if DIST(r, FIGHTER, tF) = 2n,




The value of function DIST (x, FIGHTER, tF) = k+1, where k is the number of symbol of the
trajectory tF, whose parameter value equals x. Consequently

DIST (e5, FIGHTER, tF) = 2
DIST (e4, FIGHTER, tF) = 3
DIST (f3, FIGHTER, tF) = 4
DIST (g2, FIGHTER, tF) = 5
DIST (h1, FIGHTER, tF) = 6

For the rest of x from X DIST (x, FIGHTER, tF) = 2 x 62 =124. Thus for r ∈{e5, e4, f3, g2,
h1}={35, 28, 21, 15, 8} gr(FIGHTER, tF, zero) = 1, for the rest of r gr= 0.

Now we can complete application of production 41. It remains to compute values of functional
formula:

NEXTTIME(z) = ALPHA(z, (FIGHTER, tF), 5–5+1).
As we know from previous steps NEXTTIME(x) = 124 for all x from X. Therefor according to
Table 4

ALPHA(x, FIGHTER,t F ,1) =
min(NEXTTIME(x), 1), if DIST(x, FIGHTER,tF) < 124

 NEXTTIME(x), if DIST(x, FIGHTER,tF) = 124 .




Thus, for x ∈{e5, e4, f3, g2, h1} ALPHA(x, FIGHTER, tF, 1) = 1, while for other x
ALPHA(x, FIGHTER, tF, 1) = 124. The same values should be assigned to NEXTTIME(z).

1

1

1

1 1

1

1

1

1

1

Fig. 9. A representation of values of w and NEXTTIME(z) after generating trajectory
a(f6)a(e5)a(e4)a(f3)a(g2)a(h1.

24

Values of function g and, consequently, values of components of vector w , different from
zero, mark ending points of prospective trajectories of robots from P1 which could support
interception of BOMBER by protecting points the 1-st negation trajectories, points e5, e4, f3, g2,
h1 in Fig. 9. These trajectories are called the 2-nd negation trajectories. Values of NEXTTIME for
the same points (Fig. 9) designate maximum lengths of those prospective trajectories. These values
are equal 1 because trajectory tF is an intercepting trajectory of maximum length (5). It means that
no one robot has enough time to intercept BOMBER at point h1 while moving along the trajectory
of a greater length. Thus there is no extra time for robots from P1 to approach points of trajectory
tF (for possible protection) while robot FIGHTER is moving along tF. Values of w and
NEXTTIME are computed employing productions 3 and 4j, while 1-st negation trajectories are
generated. After completion of this generation these values will be assigned to v and TIME
respectively (production 5) to be used for generation of the 2-nd negation trajectories.

Points e5, e4, f3, g2, h1 are considered as targets by the other side P2 as well. It means that
the grammar should generate trajectories of robots (if they exist) which could intercept motion of
FIGHTER, and thus prevent interception of BOMBER, the own trajectories. By definition of the
Grammar of Zones (Table 3, predicate Q4) the length of such trajectories is restricted by 1.
(Obviously, there are no own trajectories in the problem shown in Fig. 7.)

Let us continue derivation of Zone. Production 41 was applied successfully, so we have to go
to the production with label 3 and proceed with searching possible starting points of the trajectories
with h1 as the ending point. We return to production 3 but with u =(44, 8, 5), i.e., with l > 0 and
x ≠ 62. This means the beginning of a new loop which consists of multiple applications of
production 3 after failures of attempts to apply one of productions 4j .

3=>t(BOMBER, tB, 5)t(FIGHTER, tF, 5) A(45, 8, 5), v, w)
3=>t(BOMBER, tB, 5)t((FIGHTER, tF, 5) A(46, 8, 5), v, w)

.
3=>t(BOMBER, tB, 5)t(FIGHTER, tF, 5) A(62, 8, 5), v, w).

Computations of NEXTTIME(z) in production 3 will not change its values. With u = (62, 8, 5)
this loop is terminated which means that no other starting points are found. Then a new loop
begins. The grammar changes ending point of prospective trajectories:

3=>t(BOMBER, tB, 5)t(FIGHTER, tF, 5) A(1, 9, 0), v, w)
3=>t(BOMBER, tB, 5)t((FIGHTER, tF, 5) A(1, 10, 0), v, w)

.
and eventually

3=>t(BOMBER, tB, 5)t(FIGHTER, tF, 5) A(1, 16, 4), v, w),
because for u = (1, 15, 0) y+1 corresponds to h2, TIME(y+1) * vy+1 = TIME(h2) * 1 = 4.

This means that point h2 is determined as the next ending point for generating trajectories of
robots which can intercept motion of the BOMBER. The following derivation steps would allow
us to look for possible starting points of such trajectories. Obviously, nothing will be found,
except a(f6)a(g5)a(h4)a(h3)a(h2), which will be rejected. The same negative result will be
achieved with the next ending point, h3. The only intercepting trajectory to be found and accepted
is as follows:

 tF1 = t1 =a(f6)a(g5)a(h4)
We have
41=>t(BOMBER,tB,5)t(FIGHTER,tF,5)t(FIGHTER,tF1,2)A((44,30,2),v, g(FIGHTER,tF1,w)),

NEXTTIME(z) = ALPHA(z, FIGHTER, tF1, 2–2+1).
Application of production 41 will result in the change of the values of w and NEXTTIME shown in
Fig. 10. Then we continue applying production 3 returning to it each time after unsuccessful
attempt of applying production 4j. This loop will be terminated when Q3(u) = (x ≠ 62) ∨ (y ≠ 62)
= F. Next we have to go to production 5. This production is applicable because Q5(w) = (w ≠ 0)
= T (current values of w are shown in Fig. 10). Thus,

5=>t(BOMBER, tB, 5)t(FIGHTER, tF, 5)t(FIGHTER, tF1, 2)A((0, 0, 0), w , zero)
TIME(z) = NEXTTIME(z)

25

1

1

1

1 1

1

1

1

1

1

1

1 1

1

Fig. 10. A representation of values of w and NEXTTIME(z) after generating trajectory
a(f6)a(g5)a(h4).)

This is the completion of generation of the 1-st negation trajectories, so production 5 performs the
assignment we promised above. Values of w are assigned to v while NEXTTIME(z) are assigned
to TIME(z). All the steps, 3 and 4j, which have been executed (or tried) for generating 1-st
negation trajectories will be repeated for generating 2-nd negation. No one such trajectory should
be found. The next return to production 5 will happen with w = zero (nothing is found). It means
this production is not applicable, and we complete derivation applying production 6:

6=>t(BOMBER, tB, 5)t(FIGHTER, tF, 5)t(FIGHTER, tF1, 2).

14. Zones for the Game of Chess.

The problem of programming the game of chess, is the most transparent example of a
Linguistic Geometry application. This problem domain with the method informally described in
[16] was the first application and experimental area for the formal linguistic approach. In this
model of the Complex System (see Section 6) X is represented by 64 squares of the chess board,
i.e., n=64; P1 and P2 are the white and black pieces; Rp(x, y) are given by the rules of the
game, permitting or forbidding a piece p to make a move from square x to square y; thus a point x
is reachable from a point y for an element p, if a piece p can move from square x to square y
according to the chess game rules; ON(p)=x, if a piece p stands on square x; v(p) is the value of
piece p, e.g., P – 1, N – 3, B – 3, R – 5, Q – 9, K – 200; Si is an arbitrary initial chess position
for analysis, or the starting position of the game; S t is the set of chess positions which can be
obtained from all possible mating positions in two half moves by capturing the King (suppose, this
capture is permitted). The sets of WFF {ON(pj) = xk} correspond to the lists of pieces with their
coordinates. TRANSITION(p, x, y) represents the move of the piece p from square x to
square y; if a piece of the opposing color stands on y, a capture is made.

The chess problem does not completely meet the requirements of the definition of the
Complex System. We have neglected such an important chess concept as a blockade: in the
Complex System several elements (pieces of the same color) can stand on the same point (square).
Besides that, we have neglected certain chess features, such as castling, capture en passant, Pawn
promotion, etc. All these chess complications are not crucial for our model; at the implementation
stage of the hierarchy of languages for this model (program PIONEER) all this was taken into
account [16].

26

1

2

3

4

5

6

8

++

+

+

 a b c d e f g h

7

Fig. 11. Interpretation of the Language of Zones for chess model.

Let us consider an example of the Language of Zones for the chess model. We are going to
present this language informally, listing Zones and trajectories, without explicit generating by the
Grammar of Zones. An artificial chess position is shown in Fig. 11. Assuming that, the so-called
horizon, H = 2 steps, in this range of lengths the only couple of attacking and attacked pieces are
the Bishop on f2 and Pawn on e5, respectively. Thus, only such Zones can be generated.
Trajectories a(f2)a(g3)a(e5) and a(f2)a(d4)a(e5) for the Bishop are the main trajectories of these
Zones. They are shown by bold lines. All the other lines shown in Fig. 11 single out one Zone of
the bundle of Zones generated by the grammar. The black side can intercept the Bishop employing
one of the various intercepting trajectories, the 1-st negation trajectories. For example, the
interception on square g3 can be accomplished by the black pieces located in the range of two steps
from g3. (By definition of Zone it is generated in assumption that the protecting side is to move.)
Thus one of the Knight’s trajectories from g7 to g3, a(g7)a(f5)a(g3) or a(g7)a(h5)a(g3), should
be included into the this Zone. Similarly either a(g7)a(e6)a(d4), or a(g7)a(f5)a(d4) can be
included to intercept Bishop on d4. The last chance for interception is to approach the target, Pawn
on e5, in 3 steps. It can be done by the King on b7 along one of two trajectories,
a(b7)a(c6)a(d5)a(e5) or a(b7)a(c7)a(d6)a(e5). There are no other trajectories to prevent the attack.
White side should include its own trajectories to support the attack, i.e., the motion of the Bishop
along one of the main trajectories. By definition of Zone they are in the range of one step only.
They are a(h2)a(g3), a(g4)a(h5) (if a(g7)a(h5)a(g3) was included) or a(g4)a(f5) (in case of
a(g7)a(f5)a(g3)).

15. Zones for the Scheduling Problem

Assume that energy-producing company is going to set up a maintenance plan for power-
producing equipment for a given planning period Tmax, e.g., a month, a year. There exists an array

27

of m demands for maintenance work of power units. The problem is to satisfy these demands. To
do that we must include the maintenance work for all the demanded units into the plan, i.e., to
schedule maintenance. A maintenance work of a power unit causes turning off this unit, and,
consequently, a fall of generating power in the system. Thus, it is impossible to satisfy all the
demands because of problem constraints, which is basically the power reserve, i.e., the amount of
power to be lost without turning off customers. This amount varies daily.

(0,0,p)
 1

(1,0,p)
 1

(2,0,p)
 1

(g,0,p)
 1

p
1

Q
fall

11
Q

fall

21

(1,1,r) (1,0,r) (2,1,r) (2,0,r) (3,1,r) (3,0,r)

(1,0,q) (2,0,q)
 1 1

 2 2 2
(1,0,q) (2,0,q) (3,0,q)

(0,0,p) (1,0,p) (2,0,p) (g,0,p)
 2 2 2 2

(0,1,p) (1,1,p) (2,1,p)
 2 2 2

Q
12

fall

22

p
2

Q
fall

Q
fall

23

P
res

1
P

2

res
P

3

res

q 2

q
1

Fig. 12. Interpretation of the Language of Zones for the maintenance planning model.

Each demand requests maintenance work for one power unit (j-th unit) and contains three
attributes: w j, the demanded power of the unit; hj, the fall in the operating power of the energy-
producing system because of maintenance of this unit (resources requirement); and xj

max, required

28

duration of maintenance. For simplicity, we neglect the rest of the demand parameters. For the
same reason we specify the only one type of constraint, the function f(i) of the power reserve for
the energy-producing system, where i is the number of a day of the planning period. On the i-th
day of the planning period the total fall in the operating power, because of the maintenance of some
power units, can not be greater then the value f(i). The values of all the parameters are positive
integer numbers. The optimum criterion of the plan is the maximum total demanded power of the
units being maintained.

In terms of the Complex System, this problem might be represented as a twin-set of elements
and points. To avoid a long formal definition [19] which is far beyond the scope of this paper we
present here a simplified example depicted in the Fig. 12. Here points form a network which is
used by elements as a "railroad" to reach certain nodes. There are two classes of elements. The first
one includes power units, depicted as white discs p1, p2, striving to reach nodes (g, 0, p1) and (g,
0, p2) and thereby gain opposite elements q1, q2 (i.e., the ones to be maintained). The other
elements of the first class are depicted as pyramids of white disks, Pi

res: each pyramid represents a
daily stock of resources, the power reserve for the energy-producing system. The pyramids of
opposite black discs, Qij

fall, represent requirements of resources, the daily fall in the operating
power because of the maintenance of the units p1 and p2. The black discs control the nodes of
paths for discs p1, p2 and are able to gain any of them, i.e., maintenance can not take place without
provision of resources. This means we are forced to spend white discs of pyramids Pi

res

exchanging them at the points (i, 1, r) with the black discs of Qij
fall. These actions can "clear" the

paths for power units p1 and p2.

To clarify this problem and the network language representation let us consider the example
depicted in Fig. 12 in detail. This is the ”toy” maintenance planning problem for two units over a
period of three days:

w1=5, w2=2; h1=3, h2=2; x1
max=x2

max=2; Tmax=3; f(1)=4; f(2)=5; f(3)=3.
(A reader should not be confused by the simplicity of the example shown in the Fig. 12. It is cited
here only for clarification of our approach. For the practical applications described in Section 2
hundreds and even thousands of power units were considered; different kinds of resources were
taken into account, including those which required some time to be delivered to the places of
maintenance [18, 19].)

From Fig. 12 it is seen that, for setting up the maintenance plan, the elements pi have to go
from the points (0, 0, pi) to the points (g, 0, pi). In particular, for element p2 to get through to the
point (g,0,p2) along any of the paths

 (0,0,p2) –> (1,0,p2) –> (2,0,p2)–>(g,0,p2) or
 (0,0,p2)–>(0,1, p2)–>(1,1,p2)–>(2,1,p2)–>(g,0,p2),

it is necessary to do away with the elements of the set (pyramid) Q12
fall at the point (1, 0, q2), as

well as the elements of the pyramids Q22
fall, Q23

fall at the points (2, 0, q2), (3, 0, q2). The
elements of these pyramids control the points of the path of the element p2 to the target. Obviously,
pyramids of elements from Qfall correspond to the fall in power of the energy-producing system
during the time of the power units’ maintenance.

For liquidation of the elements from Qfall we have three sets (pyramids of discs) P1
res, P2

res,
P3

res at the points (1, 0, r), (2, 0, r) and (3, 0, r) corresponding to the power reserves in the
system during each particular day. It is necessary to carry out a transition, i.e., to move an element
from P1

res to the point (1, 1, r), then move an element from Q12
fall to the same point, i.e., to

perform a "capture", then move the next element from P1
res, and so forth.

In the given example the pyramids are placed at one step distance from the points of
exchange. It means the instantaneous availability of resources in the given problem. For complex
real-world problems the pyramids of resources have to be placed several steps from the points of
exchange which means that resource delivery should start in advance, in several time intervals.
 Returning to our example, if at the point (1, 1, r) it is possible to exchange all the elements

29

from Qfall, then the point (1, 0, p2) becomes traversable freely for the element p2. If this, however,
is not possible (as is in fact shown in Fig. 12), owing to the fact that three elements of the pyramid
P1

res were spent on removing the control from the point (1, 0, p1), i.e., on liquidating Q11
fall, and

if the remaining single element is not sufficient for destroying the two elements of Q12
fall, the

element p2 is forced to move to the point (0, 1, p2). Thus, on the first day of the planning period,
only one of the power units (p1, for example) can be taken out for maintenance because of the
insufficiency of the power reserve. The second unit p2 will be taken out on the second day
(displacement (0, 1, p2)–>(1, 1, p2)). Different versions of the maintenance plan are matched by
different variants of movement of elements from P along points from X.

Due to the instantaneous availability of resources mentioned above all the Zones generated for
this example are very “simple.” They have 1-st negation trajectories of the length 1 only.
Nevertheless this example is interesting because the Language of Zones here corresponds to the
network of Zones subordinate to each other. The highest level of this hierarchy consists of two
Zones Z1 and Z2 of the power units p1 and p2. The first one Z1 includes the main trajectory

a(0, 0, p1)a(1, 0, p1)a(2, 0, p1)a(g, 0, p1)
and 1-st negation trajectories
a(1, 0, q1)a(1, 0, p1) for the elements from Q11fall and a(2, 0, q1)a(2, 0, p1) from Q21fall.
The second Zone Z2 includes two main trajectories

a(0, 0, p2)a(1, 0, p2)a(2, 0, p2)a(g, 0, p2) and
a(0, 0, p2)a(0, 1, p2)a(1, 1, p2)a(2, 1, p2)a(g, 0, p2)

and 1-st negation trajectories:
 a(1, 0, q2)a(1, 0, p2) for the elements from Q12fall ,

a(2, 0, q2)a(2, 0, p2) and a(2, 0, q2)a(1, 1, p2) for the elements from Q22fall,
a(3, 0, q2)a(2, 1, p2) for the elements from Q23fall.

The next level of this hierarchy includes many Zones Zij res which provide resources for
maintenance work. For example, Zones Zi1 res include the main trajectories
a(1,0,r)a(1,1,p2)a(1,0,q1) for different elements from P1res while Zi2 res include
a(1,0,r)a(1,1,p2)a(1,0,q2). Zones Zi1 res and Zi2 res are intended for liquidation of the elements
from Q11fall and Q12fall, respectively, which means that providing of resources is required. First
negation trajectories for Zi1 res are a(1,0,q1)a(1,1,r) while for Zi2 res a(1,0,q2)a(1,1,r). The
trajectories supporting the attack include a(1,0,r)a(1,1,r). These Zones are subordinate to Zones
Z1 and Z2. Similar Zones are generated for P2res and P3res.

For complex real-world problems subordinate Zones usually have longer main trajectories
which means that resources delivery in this case requires some time.

16. Conclusions and expectations

The results presented in this paper outline the main ideas of description and generating
techniques of Two-dimensional Linguistic Geometry. There are many points of growth and
research in this field.

The most exciting results are expected in the field of deeper study of the properties of
translations. These studies should allow us to give a formal and constructive solution of the Frame
Problem [13, 15] for the Complex System. It means that eventually we are going to give an
effective description of the “dynamic” boundaries between the actual and outdated information
about the Complex System in a process of search.

 An efficient program implementation of the general network grammar, like the Grammar of
Zones, especially in parallel environment, would permit us to generate applications by turning this
general grammar for the specific practical problems. Theoretical problems of complexity and
accuracy of solutions are of great interest as well. Of course, very interesting results should be
expected in the field of transfer of the linguistic approach to different complex hierarchical systems.

30

References

1. M.R. Garey and D.S.Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness, W.H. Freeman and Co.: San Francisco, (1991).

2. H.A.Simon, The Sciences of the Artificial, 2-nd ed., The MIT Press: Cambridge, MA,
(1980).

3. K.S. Fu, Syntactic methods in pattern recognition, Mathematics in Science and Engineering,
vol. 112, edited by Richard Bellman, Academic Press: New York, (1974).

4. K.S. Fu, Digital pattern recognition, Springer-Verlag, New York, (1980).
5. R.N. Narasimhan, Syntax–Directed Interpretation of Classes of Pictures, Communications

of the ACM, vol. 9, 166–173, (1966).
6. T. Pavlidis, Linear and Context-Free Graph Grammars, Journal of the ACM, vol. 19, 11–

22, (1972).
7. A.C. Shaw, A Formal Picture Description Scheme as a Basis for Picture Processing System,

Information and Control, vol. 19, 9–52, (1969).
8. J. Feder, Plex languages, Information Sciences, vol. 3, 225–241, (1971).
9. J.L. Pfaltz and A. Rosenfeld, WEB Grammars, in Artificial Intelligence, Proceedings of the

1-st International Joint Conference , Washington, D.C., 609–619, (May 1969).
10. D.E. Knuth, Semantics of Context-Free Languages, Mathematical Systems Theory, vol. 2-2,

127–146, (1968).
11. D.J. Rozenkrantz, "Programmed Grammars and Classes of Formal Languages", Journal of

the ACM, vol. 16-1, 107–131, (1969).
12. N.G. Volchenkov, The Interpreter of Context-Free Controlled Parameter Programmed

Grammars, in Cybernetics Problems. Intellectual Data Banks, ed. by L.T. Kuzin, The USSR
Academy of Sciences: Moscow, 147–157, (1979) [in Russian].

13. R.E. Fikes and N.J. Nilsson, STRIPS: A New Approach to the Application of Theorem
Proving in Problem Solving, Artificial Intelligence, vol. 2, 189–208, (1971).

14. E.D. Sacerdoti, Planning in a Hierarchy of Abstraction Spaces, Artificial Intelligence, vol. 5-
1, 115-135, (1974).

15. J. McCarthy and P.J. Hayes, Some Philosophical Problems from the Standpoint of Artificial
Intelligence, Machine Intelligence, vol. 4, 463–502, (1969).

16. M.M. Botvinnik, Computers in Chess: Solving Inexact Search Problems. Springer Series in
Symbolic Computation, Springer-Verlag: New York , (1984).

17. B.M. Stilman, Hierarchy of Formal Grammars for Solving Search Problems, in Artificial
Intelligence. Results and Prospects, Proceedings of the International Workshop, Moscow,
63–72, (1985), [in Russian].

18. A.I. Reznitskiy and B.M. Stilman, Use of Method PIONEER in Automating the Planning of
Maintenance of Power-Generating Equipment, Automatics and Remote Control, 11, 147-
153, (1983) [in Russian].

19. M. Botvinnik, E. Petriyev, A. Reznitskiy, et al., Application of New Method for Solving
Search Problems For Power Equipment Maintenance Scheduling”, Economics and
Mathematical Methods, vol. 19-6, 1030-1041, (1983) [in Russian].

20. N.J. Nilsson, Principles of Artificial Intelligence, Tioga Publishing Co., Palo Alto, CA,
(1980).

21. B. Stilman, A Syntactic Structure for Complex Systems, Proc. of the Second Golden West
International Conference on Intelligent Systems, Reno, NE, 269-274, (June 1992).

22. B. Stilman, A Geometry of Hierarchical Systems: Generating Techniques, Proc. of the Ninth
Israeli Conference on Artificial Intelligence and Computer Vision, Tel Aviv, Israel, (Dec.
1992) (to appear).

23. B. Stilman, A Syntactic Approach to Geometric Reasoning about Complex Systems, Proc.
of the Fifth International Symposium on Artificial Intelligence, Cancun, Mexico, (Dec. 1992)
(to appear).

24. B. Stilman, A Linguistic Geometry of Complex Systems, Annals of Mathematics and
Artificial Intelligence, (1992), (submitted).

31

25. B. Stilman, A Linguistic Approach to Geometric Reasoning, Int. J. Computers and
Mathematics with Applications, (1992), (to appear).

26. B. Stilman, Two-dimensional Structures in Linguistic Geometry, Dept. of Computer
Science, University of Colorado at Denver, Denver, CO, Technical Report TR-20, (Sept.
1992).

27. M. Stefik, Planning and meta-planning (MOLGEN: Part 2), Artificial Intelligence, 16-2,
141-169, (1981).

28. D. Chapman, Planning for conjunctive goals, Artificial Intelligence, 32-3, (1987).
29. A. Rosenfeld, Picture Languages: Formal Models for Picture Recognition, Academic Press,

(1979).

